Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Networks, compatibility

Compatibility, networkability regarding object, method, and process, e.g., different IT tools use the same object resource to plan maintenance and production. [Pg.163]

SCI was perhaps the first SAN to achieve IEEE standardization and has very good bandwidth and latency characteristics. Existing implementations provide between 3.2- and 8-Gbps peak bandwidth with best latencies below 4 /u,sec. The SCI standard includes protocol for support of distributed shared memory operation. However, most clusters employing SCI use PCI-compatible network control cards (e.g.. Dolphin) that cannot support cross-node cache coherence. Nonetheless, even in distributed memory clusters, it provides an effective network infrastructure. [Pg.8]

ISI is available in hard copy and electronically at EPA s headquarters and regional Hbraries, and through the National Technical Information Service (NTIS). The electronic form may be installed on IBM PC-compatible computers or placed on local area networks, and mn under Microsoft WINDOWS or WordPerfect s Library program. The Macintosh version is no longer available. The 1993 update will include the ISI hardcopy, PC disks, and the PC system user manual. EPA also pubHshes ACCESS EPA, which provides sources of information, databases, and pubHcations within the EPA. Chapter 5 of that pubhcation includes important environmental databases in air and soHd waste, pesticides and toxic substances, water, and cross-program (110). EPA also provides databases accessible through EPA Hbraries, which describe the private EPA and commercial databases available to Hbrary users (111). [Pg.130]

The net effect is that tackifiers raise the 7g of the blend, but because they are very low molecular weight, their only contribution to the modulus is to dilute the elastic network, thereby reducing the modulus. It is worth noting that if the rheological modifier had a 7g less than the elastomer (as for example, an added compatible oil), the blend would be plasticized, i.e. while the modulus would be reduced due to network dilution, the T also would be reduced and a PSA would not result. This general effect of tackification of an elastomer is shown in the modulus-temperature plot in Fig. 4, after the manner of Class and Chu. Chu [10] points out that the first step in formulating a PSA would be to use Eqs. 1 and 2 to formulate to a 7g/modulus window that approximates the desired PSA characteristics. Windows of 7g/modulus for a variety of PSA applications have been put forward by Carper [35]. [Pg.477]

Organizes analytical laboratory paperwork sample log-in and tracking to final analysis reporting and invoicing, operates on singlc-CPU or local area network of IBM PC/XT/AT/80386 or compatible. [Pg.292]

Miscibility or compatibility provided by the compatibilizer or TLCP itself can affect the dimensional stability of in situ composites. The feature of ultra-high modulus and low viscosity melt of a nematic liquid crystalline polymer is suitable to induce greater dimensional stability in the composites. For drawn amorphous polymers, if the formed articles are exposed to sufficiently high temperatures, the extended chains are retracted by the entropic driving force of the stretched backbone, similar to the contraction of the stretched rubber network [61,62]. The presence of filler in the extruded articles significantly reduces the total extent of recoil. This can be attributed to the orientation of the fibers in the direction of drawing, which may act as a constraint for a certain amount of polymeric material surrounding them. [Pg.598]

Network system, and installation costs (ensure compatibility with computer and maintenance package) ... [Pg.790]

The classic objective of alloying and blending is to find two or more polymers whose mixture will have synergistic property improvements (Fig. 6-8). Among the techniques used to combine dissimilar polymers are cross-linking to form what are called interpenetrating networks (IPNs), and grafting, to improve the compatibility of the plastics. [Pg.346]

Biomedical Applications Due to their excellent blood compatibility (low interaction with plasma proteins) and high oxygen and moisture permeabilities, siloxane containing copolymers and networks have been extensively evaluated and used in the construction of blood contacting devices and contact lenses 376). Depending on the actual use, the desired mechanical properties of these materials are usually achieved by careful design and selection of the organic component in the copolymers. [Pg.72]

Microstructure (see also Stereochemistry and Tacticity) 114,115.128.138,139 Miscibility (see also Compatibility) 12, 53, 68 Model networks 163 Modification of a polymer, chemical 154 Mold release 71, 74 Molecular weight, control 147. 154... [Pg.252]

Wood and Hill consider that the role of fluoride in these glasses is uncertain. Phase-separation studies suggest that the structure of the glass might relate to the crystalline species formed, in which case a microcrystallite glass model is appropriate. But other evidence cited above on the structure-breaking role of fluoride is compatible with a random network model. [Pg.130]

The urea distribution network in Europe, around year 2006, would be limited to one distribution point for a 500 km radius area (heavy-duty vehicles compatibility - data to be checked and actualized), and would not allow a co-fueling strategy whose interests are the simultaneous fuel/urea filling up at the service-station and the minimization of the urea tank volume. Today, it is difficult to anticipate the consequences of EuroV. [Pg.230]

Traditionally, we create thermoset polymers during step growth polymerization by adding sufficient levels of a polyfunctional monomer to the reaction mixture so that an interconnected network can form. An example of a network formed from trifimctional monomers is shown in Fig. 2.12b). Each of the functional groups can react with compatible functional groups on monomers, dimers, trimers, oligomers, and polymers to create a three-dimensional network of polymer chains. [Pg.60]

Most probable positions of the chains are determined by the use of a characteristic vector r. This vector is representative of an average network chain of N links (the average links per chain). It deforms affinely whereas the actual network chains might not, and its value depends only upon network deformation. Crystallization leaves r essentially unaltered since the miniscule volume contraction brought about by crystallization can be ignored. But real network chains are severely displaced by crystallization. These displacements, however, must be compatible with the immutability of r. So in a sense, the characteristic vector r limits the configurational variations of the chains to those consistent with a fixed network shape and size at a given deformation. [Pg.305]

The vector dlrectiois of r (therefore Rj) are therefore not assigned randomly but by some plan compatible with the network structure. This allows us to write... [Pg.307]

The results of stress-strain measurements can be summarized as follows (1) the reduced stress S (A- A ) (Ais the extension ratio) is practically independent of strain so that the Mooney-Rivlin constant C2 is practically zero for dry as well as swollen samples (C2/C1=0 0.05) (2) the values of G are practically the same whether obtained on dry or swollen samples (3) assuming that Gee=0, the data are compatible with the chemical contribution and A 1 (4) the difference between the phantom network dependence with the value of A given by Eq.(4) and the experimental moduli fits well the theoretical dependence of G e in Eq.(2) or (3). The proportionality constant in G for series of networks with s equal to 0, 0.2, 0.33, and 0. Ewas practically the same -(8.2, 6.3, 8.8, and 8.5)x10-4 mol/cm with the average value 7.95x10 mol/cm. Results (1) and (2) suggest that phantom network behavior has been reached, but the result(3) is contrary to that. Either the constraints do survive also in the swollen and stressed states, or we have to consider an extra contribution due to the incrossability of "phantom" chains. The latter explanation is somewhat supported by the constancy of in Eq.(2) for a series of samples of different composition. [Pg.408]

A spreadsheet program can be used to capture and display the chart information. The chart can then be made accessible via a network server to all those involved in a common operation. Use of the Chemical Reactivity Worksheet provided by NOAA (2002) automatically generates a compatibility chart, as shown in the example of Figure 4.3. [Pg.92]


See other pages where Networks, compatibility is mentioned: [Pg.82]    [Pg.82]    [Pg.74]    [Pg.260]    [Pg.128]    [Pg.44]    [Pg.409]    [Pg.410]    [Pg.424]    [Pg.429]    [Pg.974]    [Pg.654]    [Pg.902]    [Pg.419]    [Pg.107]    [Pg.195]    [Pg.221]    [Pg.59]    [Pg.170]    [Pg.187]    [Pg.519]    [Pg.893]    [Pg.16]    [Pg.729]    [Pg.33]    [Pg.489]    [Pg.254]    [Pg.301]    [Pg.76]    [Pg.99]    [Pg.333]    [Pg.5]    [Pg.198]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Behavior compatible with random network

Behavior compatible with random network polymer

© 2024 chempedia.info