Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Common time constants

The meter will also have a control for the time constant for the display (i.e. the speed of the meter response), and the two common time constants are Fast and Slow . Others may have an impulse and peak hold facility. More complex meters incorporate Leq-measuring devices, and these are also available as hand-held Type 1 meters with filters as in the basic meter. [Pg.654]

Some common time constants, relating to particular chemical engineering flow applications, are... [Pg.90]

The average velocity and rate of ATP hydrolysis can be obtained by dividing the net probabiUties (10) by a common time constant and then using the thermodynamic identities in (9) and the definition in (11) to simplify the resulting expression to obtain... [Pg.295]

Monte Carlo simulations require less computer time to execute each iteration than a molecular dynamics simulation on the same system. However, Monte Carlo simulations are more limited in that they cannot yield time-dependent information, such as diffusion coefficients or viscosity. As with molecular dynamics, constant NVT simulations are most common, but constant NPT simulations are possible using a coordinate scaling step. Calculations that are not constant N can be constructed by including probabilities for particle creation and annihilation. These calculations present technical difficulties due to having very low probabilities for creation and annihilation, thus requiring very large collections of molecules and long simulation times. [Pg.63]

Adaptive Control. An adaptive control strategy is one in which the controller characteristics, ie, the algorithm or the control parameters within it, are automatically adjusted for changes in the dynamic characteristics of the process itself (34). The incentives for an adaptive control strategy generally arise from two factors common in many process plants (/) the process and portions thereof are really nonlinear and (2) the process state, environment, and equipment s performance all vary over time. Because of these factors, the process gain and process time constants vary with process conditions, eg, flow rates and temperatures, and over time. Often such variations do not cause an unacceptable problem. In some instances, however, these variations do cause deterioration in control performance, and the controllers need to be retuned for the different conditions. [Pg.75]

Sample times for the microprocessor-based SLCs vaiy from O.I to 0.4 seconds. Low-pass analog electronic filters are installed on the process inputs to stop abasing errors caused by fast changes in the process signal. Input filter time constants are typically in the range From O.I to I s. Microprocessor-based SLCs may be made part of a DCS by using the communication port (RS-488 is common) on the controller or may be operated in a standalone mode independent of the DCS. [Pg.776]

In a process loop with a pneumatic controller and a large process time constant. Here the process time constant is dominant, and the positioner will improve the linearitv of the final control element, Some common processes with large time constants that benefit from positioner application are liquid level, temperature, large volume gas pressure, and mixing,... [Pg.785]

Objective Evaluation of Color. In recent years a method has been devised and internationally adopted (International Commission on Illumination, I.C.I.) that makes possible objective specification of color in terms of equivalent stimuli. It provides a common language for description of the color of an object illuminated by a standard illuminant and viewed by a standard observer (H). Reflectance spectro-photometric curves, such as those described above, provide the necessary data. The results are expressed in one of two systems the tristimulus system in which the equivalent stimulus is a mixture of three standard primaries, or the heterogeneous-homogeneous system in which the equivalent stimulus is a mixture of light from a standard heterogeneous illuminant and a pure spectrum color (dominant wave-length-purity system). These systems provide a means of expressing the objective time-constant spectrophotometric results in numerical form, more suitable for tabulation and correlation studies. In the application to food work, the necessary experimental data have been obtained with spectrophotometers or certain photoelectric colorimeters. [Pg.7]

While these calculations provide information about the ultimate equilibrium conditions, redox reactions are often slow on human time scales, and sometimes even on geological time scales. Furthermore, the reactions in natural systems are complex and may be catalyzed or inhibited by the solids or trace constituents present. There is a dearth of information on the kinetics of redox reactions in such systems, but it is clear that many chemical species commonly found in environmental samples would not be present if equilibrium were attained. Furthermore, the conditions at equilibrium depend on the concentration of other species in the system, many of which are difficult or impossible to determine analytically. Morgan and Stone (1985) reviewed the kinetics of many environmentally important reactions and pointed out that determination of whether an equilibrium model is appropriate in a given situation depends on the relative time constants of the chemical reactions of interest and the physical processes governing the movement of material through the system. This point is discussed in some detail in Section 15.3.8. In the absence of detailed information with which to evaluate these time constants, chemical analysis for metals in each of their oxidation states, rather than equilibrium calculations, must be conducted to evaluate the current state of a system and the biological or geochemical importance of the metals it contains. [Pg.383]

Complex models are often slow in execution owing to the large number of equations involved and the large range of time constants. Under these circumstances it is often useful to approximate the transient behaviour of the full model by a simpler model representation which is faster to compute. Such simplifications are commonly achieved by a combination of first-order lags and time delays and are often represented in Laplace transform form, especially when the sub-model is to be used as part of a control engineering application. [Pg.81]

All tuning relations provide different results. Generally, the Cohen and Coon relation has the largest proportional gain and the dynamic response tends to be the most underdamped. The Ciancone-Marlin relation provides the most conservative setting, and it uses a very small derivative time constant and a relatively large integral time constant. In a way, their correlation reflects a common industrial preference for PI controllers. [Pg.108]

In terms of controller design, the closed-loop poles (or now the root loci) also tell us about the system dynamics. We can extract much more information from a root locus plot than from a Routh criterion analysis or a s = jco substitution. In fact, it is common to impose, say, a time constant or a damping ratio specification on the system when we use root locus plots as a design tool. [Pg.139]

In general, the longer the sweep time the better the sensitivity since the filter time constant parameter can be set longer with consequent improvement in signal-to-noise ratio. In practice, however, sweep times are usually set in accordance with the expected lifetime of the radical species, the stability of the instrument, and the patience of the operator. Decay of the radical or drift of the spectrometer during a scan is clearly undesirable. The sweep time is most commonly set in the range 4-10 min. [Pg.14]

To minimize absorption from the solution, optical thin layer cells have been designed. The working electrode has the shape of a disc, and is mounted closely behind an IR-transparent window. For experiments in aqueous solutions the intervening layer is about 0.2 to 2 ftm thick. Since the solution layer in front of the working electrode is thin, its resistance is high this increases the time required for double-layer charging - time constants of the order of a few milliseconds or longer are common - and may create problems with a nonuniform potential distribution. [Pg.203]

The most common numerical problem, as shown by some of the simulation examples, is that of equation stiffness. This is manifested by the need to use shorter and shorter integration step lengths, with the result that the solution proceeds more and more slowly and may come to a complete halt. Such behaviour is exhibited by systems having combinations of very fast and very slow processes. Stiff systems can also be thought of as consisting of differential equations, having large differences in the process time constants. Sometimes, the... [Pg.90]

Lower), as reported earlier, but also rises more rapidly than kp (Fig. 13 Upper). This result immediately requires a more complex kinetic scheme than that of Scheme I. Excellent self-consistent fits to the time evolution of [1] (t) are obtained with an expression that is the sum of three kinetic phases, all having a common rate constant for triplet decay, kp, but with differing values of the rate constants for the decay of 1(3000 s , 40s , 5s ). We have further seen that complexes with different Cc show similar behavior, but with the fractional contribution of these multiple phases varying with species. [Pg.105]

A common assumption in the relaxation theory is that the time-correlation function decays exponentially, with the above-mentioned correlation time as the time constant (this assumption can be rigorously derived for certain limiting situations (18)). The spectral density function is then Lorentzian and the nuclear spin relaxation rate of Eq. (7) becomes ... [Pg.46]

Lignocaine, originally introduced as a local anesthetic, is now widely used for the treatment and prevention of ventricular arrhythmias. When used for this purpose, it is usually administered either by intramuscular injection, or as a bolus intravenously, or, more commonly, by constant intravenous infusion. For clinical purposes, lignocaine measurements arc usually carried out on plasma collected either while the patient is receiving a constant intravenous infusion or at a specified time after the last intramuscular injection. Colorimetric methods have been used in the past (S29), but, because they lack both sensitivity and specificity, may yield false and misleading results. They have largely been replaced by GLC techniques (A3, El, K5). [Pg.83]

Measurements of the common physical constants such as boiling point or refractive index are not sufficiently sensitive to determine the trace amounts of impurities in question. Besides the common spectroscopic methods, techniques like gas chromatography (GC), high-pressure liquid chromatography (HPLC), or thin-layer chromatography (TLC) are useful. The surest criterion for the absence of interfering foreign compounds lies in the polymerization itself the purification is repeated until test polymerizations on the course of the reaction under standard conditions are reproducible (conversion-time curve, viscosity number of the polymers). [Pg.65]


See other pages where Common time constants is mentioned: [Pg.90]    [Pg.157]    [Pg.64]    [Pg.240]    [Pg.3169]    [Pg.78]    [Pg.90]    [Pg.157]    [Pg.64]    [Pg.240]    [Pg.3169]    [Pg.78]    [Pg.303]    [Pg.728]    [Pg.728]    [Pg.10]    [Pg.57]    [Pg.400]    [Pg.256]    [Pg.234]    [Pg.333]    [Pg.125]    [Pg.143]    [Pg.250]    [Pg.55]    [Pg.97]    [Pg.107]    [Pg.65]    [Pg.27]    [Pg.234]    [Pg.340]    [Pg.265]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Common time

Time constant

© 2024 chempedia.info