Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Petroleum ether, purification

The petroleum ether purification step may be eliminated with equally satisfactory results. After dehydration with ethyl alcohol, the residue is dried under reduced pressure to constant weight and used directly for the next step. [Pg.29]

Oglialoro modification of, 708 Perkin triangle, 108, 218f Kon modification of, 109 Peroxides, detection of, in ether, 163 removal from diethyl ether, 163 removal from isopropyl alcohol, 886 Petroleum ether, purification of, 174 Phenacetin, 996, 997 1 10-Phenanthroline, 991, 992 p-Phenetidine, 997, 998 Phenetole, 665,670 Phenobarbitone, 1003,1004,1005 Phenol, 595, 613 Phenol aldehyde polymers, 1016 formation of, 1022 Phenolphthalein, 984, 985 action as indicator, 984 ... [Pg.1182]

The octyl hydrogen phthalate is filtered, washed with water, ground thoroughly with water in a mortar and finally filtered and dried. For complete purification it may be crystallized either from petroleum ether (b.p. 60-70°) or glacial acetic acid from which it separates as needles melting at 55°. The crude material, however, is perfectly satisfactory for the following experiments. The yield is nearly quantitative if the ec.-octyl alcohol is pure (Note 2). [Pg.69]

Acids that are solids can be purified in this way, except that distillation is replaced by repeated crystallisation (preferable from at least two different solvents such as water, alcohol or aqueous alcohol, toluene, toluene/petroleum ether or acetic acid.) Water-insoluble acids can be partially purified by dissolution in N sodium hydroxide solution and precipitation with dilute mineral acid. If the acid is required to be free from sodium ions, then it is better to dissolve the acid in hot N ammonia, heat to ca 80°, adding slightly more than an equal volume of N formic acid and allowing to cool slowly for crystallisation. Any ammonia, formic acid or ammonium formate that adhere to the acid are removed when the acid is dried in a vacuum — they are volatile. The separation and purification of naturally occurring fatty acids, based on distillation, salt solubility and low temperature crystallisation, are described by K.S.Markley (Ed.), Fatty Acids, 2nd Edn, part 3, Chap. 20, Interscience, New York, 1964. [Pg.62]

Common impurities found in aldehydes are the corresponding alcohols, aldols and water from selfcondensation, and the corresponding acids formed by autoxidation. Acids can be removed by shaking with aqueous 10% sodium bicarbonate solution. The organic liquid is then washed with water. It is dried with anhydrous sodium sulfate or magnesium sulfate and then fractionally distilled. Water soluble aldehydes must be dissolved in a suitable solvent such as diethyl ether before being washed in this way. Further purification can be effected via the bisulfite derivative (see pp. 57 and 59) or the Schiff base formed with aniline or benzidine. Solid aldehydes can be dissolved in diethyl ether and purified as above. Alternatively, they can be steam distilled, then sublimed and crystallised from toluene or petroleum ether. [Pg.63]

Because phenols are weak acids, they can be freed from neutral impurities by dissolution in aqueous N sodium hydroxide and extraction with a solvent such as diethyl ether, or by steam distillation to remove the non-acidic material. The phenol is recovered by acidification of the aqueous phase with 2N sulfuric acid, and either extracted with ether or steam distilled. In the second case the phenol is extracted from the steam distillate after saturating it with sodium chloride (salting out). A solvent is necessary when large quantities of liquid phenols are purified. The phenol is fractionated by distillation under reduced pressure, preferably in an atmosphere of nitrogen to minimise oxidation. Solid phenols can be crystallised from toluene, petroleum ether or a mixture of these solvents, and can be sublimed under vacuum. Purification can also be effected by fractional crystallisation or zone refining. For further purification of phenols via their acetyl or benzoyl derivatives (vide supra). [Pg.68]

Benzene, which has been used as a solvent successfully and extensively in the past for reactions and purification by chromatography and crystallisation is now considered a very dangerous substance so it hasto be used with extreme care. We emphasise that an alternative solvent system to benzene (e.g. toluene, toluene-petroleum ether, or a petroleum ether to name a few) should be used first. However, if no other solvent system can be found then all operations involving benzene have to be performed in an efficient fumehood and precautions must be taken to avoid inhalation and contact with skin and eyes. Whenever benzene is mentioned in the text an asterisk e.g. C Hg or benzene, is inserted to remind the user that special precaution should be adopted. [Pg.80]

Adipic acid [124-04-9] M 146.1, m 154 , pK 4.44, pK 5.45. For use as a volumetric standard, adipic acid was crystd once from hot water with the addition of a little animal charcoal, dried at 120 for 2h, then recrystd from acetone and again dried at 120 for 2h. Other purification procedures include crystn from ethyl acetate and from acetone/petroleum ether, fusion followed by filtration and crystn from the melt, and preliminary distn under vac. [Pg.98]

Skellysolve L is essentially octanes, b 95-127°. For methods of purification, see petroleum ether. [Pg.351]

Solid sulfonyl cyanides now show a melting point not more than 1-2 below that of recrystallized material. They may be used with t further purification. Analytically pure samples are obtained by r crystallization from dry benzene, diy petroleum ether, or a mixture or the two. [Pg.90]

For smaller batches, purification by washing the product through a short column of acidic alumina with light petroleum ether and evaporation of the solvent is satisfactory. [Pg.111]

Camphene dibromide, C igBr, is obtained by bromination, and subsequent purification from the monobromcamphene formed. It crystallises from alcohol in colourless prisms, melting at 90°. It is best formed by slowly adding bromine to a solution of camphene in petroleum ether, the mixture being cooled to - 10°. [Pg.52]

A mixture of 50 g of betamethasone, 50 cc of dimethylformamide, 50 cc of methyl orthobenzoate and 1.5 g of p-toluenesulfonicacid Is heated for 24 hours on oil bath at 105°C while a slow stream of nitrogen is passed through the mixture and the methanol produced as a byproduct of the reaction is distilled off. After addition of 2 cc of pyridine to neutralize the acid catalyst the solvent and the excess of methyl orthobenzoate are almost completely eliminated under vacuum at moderate temperature. The residue Is chromatographed on a column of 1,500 g of neutral aluminum oxide. By elution with ether-petroleum ether 30 g of a crystalline mixture are obtained consisting of the epimeric mixture of 170 ,21 -methyl orthobenzoates. This mixture is dissolved without further purification, in 600 cc of methanol and 240 cc of methanol and 240 cc of aqueous 2 N oxalic acid are added to the solution. The reaction mixture is heated at 40°-50°C on water bath, then concentrated under vacuum. The residue, crystallized from acetone-ether, gives betamethasone 17-benzoate, MP 225°-231°C. [Pg.167]

A solution of 1-phenyl-1//-pyrazolo[3,4-rf]pyridazinc-7-carbonitrilc (150 mg. 0.68 mmol) and A,A-diethyl-prop-l-ynamine(151 mg, 1.36 mmol) in l,4-dioxane(2 mL) was refluxed for 5 h. After cooling, the reaction mixture was poured onto excess ice, and extracted with CHC13. The extract was washed with H20, dried (Na2S04) and concentrated under reduced pressure. Purification by chromatography (silica gel, benzene then bcnzene/EtOAc 20 1) gave, from the benzene eluate, 6-diethylamino-1 -phenyl-1 //-indazole-7-carbo-nitrile [yield 81 mg (39 %) mp 104-105 C (benzene/petroleum ether)] as slightly yellow prisms and, from the second eluate, the diazocine 5 as yellow needles yield 90 mg (40 %) mp 121-122 C (benzene/ petroleum ether). [Pg.521]

The dinitrophenylhydrazones were separated from the reaction mixture by thin-layer chromatography (silica gel G developed with benzene) and further purified by thin-layer chromatography on aluminum oxide G (petroleum ether-diethyl ether (96 to 4), silica gel G (chloroform), and silica gel G (diethyl ether)). In all cases, the specific activities of the dinitrophenylhydrazones remained constant over the course of the last two purifications. [Pg.35]

The submitters purified the product by the following procedure. The residual pale yellow solid is dissolved in 50 ml of diethyl ether and the remaining solid is filtered off (Note 16). The filtrate is concentrated to a volume of ca. 25 mL, and the solution is allowed to crystallize at 0°C. Once crystallization begins, 50 mL of petroleum ether is added in two portions over 10 hr, and then crystallization is allowed to proceed overnight at 0°C. The white solid is collected by filtration and washed with a mixture of 3 1 petroleum ether-diethyl ether to afford 3.8 g of 4. Chromatographic purification of the mother liquor (5.5 x 18 cm of DSH silica gel 40-63 mm, elution with 1 L of petroleum ether/ethyl acetate 4 1 followed by 1.5 L of 3 1 petroleum ether-ethyl acetate) gives 2.5 g of 4 as a pale yellow solid. All the material is combined and recrystallized from diethyl ether/petrol as above to yield 5.2 g (47%) of 4 in two crops. [Pg.41]

Each of the sandwich compounds forms two isomers, described as clockwise and counterclockwise, respectively. Clockwise means that the atomic sequence in both rings is the same, counterclockwise that the atomic sequence is opposite. The syntheses occur best in THE at -78°C. After warming, the solvent is removed. Purification can be carried out by crystallization from petroleum, ether or better by sublimation at 60-70°C and 10 torr. The yields vary between 25 and 85%. The 17-and 18-electron complexes with V and Fe atoms show the metal atoms to be fixed above and below the ring centers. In contrast, the 19- and 20-electron complexes of Co and Ni possess slipped rings. [Pg.105]

In another study, catfish samples were homogenized in ethyl acetate, and the residues were partitioned into acetonitrile and petroleum ether, subjected to C-18 SPE purification, and analyzed using LC/UV detection. "" Quantitative recoveries were obtained for atrazine, simazine, and propazine in the 12.5-100 lagkg concentration range. [Pg.436]

Crystallization from petroleum ether (b.p. 80-100°) is far more convenient than steam distillation as a method of purification, and a product of high purity is obtained after a single crystallization. The checkers used Skellysolve C (b.p. 88-115°) with consistent results. Crystallization from ether has also been employed.2... [Pg.86]

A large number of polyfructosans that have been reported from time to time by different authors have been investigated by Schlubach and his associates. In order to obtain polysaccharides of constant optical rotation, 100 to 300 precipitations from aqueous solution by the addition of alcohol were necessary. Fifty to 150 precipitations from chloroform solution with petroleum ether were required for purification of the acetate derivatives. These were methylated according to the procedure of Haworth and Straight,24 and upon hydrolysis partially methylated fructoses were obtained. [Pg.276]

The polysaccharide was acetylated with acetic anhydride in the presence of pyridine. Purification of the acetate consisted in precipitation of a 10% boiling benzene solution with petroleum ether. One hundred and fifty such precipitations were necessary before a constant-rotating product resulted [a]D20 = — 20.1° (c = 1.0, chloroform). Cryoscopic molecular weight determinations in benzene solution gave an average value of 3918. [Pg.277]

The ease with which dissolution of the acetylated products can be achieved is affected by the method of isolation. In the author s experience, drying of the acetate with alcohol and ether results in apparent insolubility (even though the product was soluble at one stage of the purification process), and should be avoided. Drying, under diminished pressure, of the product precipitated by petroleum ether is sufficient. Chloroform is probably the best solvent. Nitroethane, tetrachlorethane, 2,4-pentanedione, pyridine, methyl acetate, ethyl acetate, and benzene, which have also been suggested, have disadvantages in that either they are unstable or they may cause aggregation in solution.44,116 116... [Pg.356]

All the procedures described were performed using dry solvents which were freshly distilled under nitrogen. Tetrahydrofuran and ether were distilled from sodium benzophenone ketal under nitrogen, and dichloromethane from calcium hydride under nitrogen. Petroleum ether (b.p. 40-60 °C) was distilled. Starting materials and solvents were used as obtained from commercial suppliers without further purification unless specified otherwise. [Pg.51]

Purification by flash column chromatography on silica (eluent petroleum ether-ethyl acetate, 2 1) gave a crystalline solid (S)-TV-(tert-butoxycarbonyl)-l-(4-methoxyphenyl)-2-hydroxyethylamine (296 mg, 74%). [Pg.104]


See other pages where Petroleum ether, purification is mentioned: [Pg.533]    [Pg.376]    [Pg.16]    [Pg.63]    [Pg.63]    [Pg.65]    [Pg.66]    [Pg.67]    [Pg.68]    [Pg.104]    [Pg.69]    [Pg.1449]    [Pg.315]    [Pg.382]    [Pg.753]    [Pg.83]    [Pg.77]    [Pg.1154]    [Pg.39]    [Pg.74]    [Pg.132]   
See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.174 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Ether, purification

Petroleum purification

Rapid purification of petroleum ether

© 2024 chempedia.info