Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Columns minimum

Each SynChropak column is tested chromatographically to assure that it has been packed according to specifications. For SynChropak GPC columns, a mixture of a high molecular weight DNA and glycyltyrosine, a dipeptide, is used to evaluate internal volume and efficiency. The mobile phase used for the test is 0.1 M potassium phosphate, pH 7, and the flow rate is 0.5 ml/min for 4.6-mm i.d. columns. Minimum plate count values and operational flow rates are listed in Table 10.4 for 4.6-mm i.d. columns of all supports and the various diameters of the SynChropak GPC 100 columns. [Pg.314]

This includes recognizing the contribution from the feed (Rp), other feeds (Rqf). sidestreams (Rs). The Rp portion is determined a.ssuming no other feeds or side-streams are pre.sent. The Rop tmd R parts represent the summation of the contributions of other feeds and side-streams to the overall column minimum reflux ratio. The calculation sequence consists basically of three steps, here reproduced by permission of Chemical Engineering, Chou and Yaws, April 25, 1988, all rights reserved [96] ... [Pg.81]

Principles and Characteristics As mentioned already (Section 3.5.2) solid-phase microextraction involves the use of a micro-fibre which is exposed to the analyte(s) for a prespecified time. GC-MS is an ideal detector after SPME extraction/injection for both qualitative and quantitative analysis. For SPME-GC analysis, the fibre is forced into the chromatography capillary injector, where the entire extraction is desorbed. A high linear flow-rate of the carrier gas along the fibre is essential to ensure complete desorption of the analytes. Because no solvent is injected, and the analytes are rapidly desorbed on to the column, minimum detection limits are improved and resolution is maintained. Online coupling of conventional fibre-based SPME coupled with GC is now becoming routine. Automated SPME takes the sample directly from bottle to gas chromatograph. Split/splitless, on-column and PTV injection are compatible with SPME. SPME can also be used very effectively for sample introduction to fast GC systems, provided that a dedicated injector is used for this purpose [69,70],... [Pg.437]

The procedure described by Suzuki et al. [11, 12], discussed in section 9.1.1.1 for the determination of chlorinated insecticides in soils has also been applied to hexane extracts of river sediments using high-resolution gas chromatography with glass capillary columns. Minimum detectable levels of a-BHC, fs-BHC, -BHC, P-BHC, Heptachlor, Heptachlor epoxide, Aldrin, Dieldrin, Endrin, p,p -DDE, p,p -TDE and p,p -DDT in lOOg samples of bottom sediment were 0.0005, 0.0032, 0.0014, 0.0040, 0.0012, 0.0020, 0.0014, 0.0020, 0.0056, 0.0032, 0.0080 and 0.0120mg kgr1 respectively. [Pg.215]

Retinol and its esters exhibit similar UV absorption spectra within a broad wavelength range and have practically equal molar absorptivities when dissolved in a given solvent. The e value of crystalline all-frans-retinol in 2-propanol at the Amax of 325 nm is 52,300 (120), which corresponds to an A m of approximately 1830. The on-column minimum detectable quantity of vitamin A using UV absorption is approximately 2 ng (121). [Pg.353]

Minimum time is chosen as the measure to compare the performances of IBD and CBD columns. Minimum time optimisation problem similar to that presented in section 5.2.1 is considered where reflux ratio (r) is optimised for a CBD column and... [Pg.354]

Field tests for detecting pinching, packing maldistribution, and column minimum throughput limit are reviewed in this chapter. Finally,... [Pg.375]

Cold on-column Minimum discrimination and thermodegradation Minimum protecffion of the analylic al cx)lumn against nonvolatile matrix cx)mponents - unsuitable for real-world focxf samples... [Pg.1501]

Na metaphosphate (NaPO,) 20 Average of performances Standard deviation Maximum of column Minimum of column 6.7... [Pg.520]

Flooding in an Extraction Column Minimum Column Diameter... [Pg.434]

Window, maximum thermal shock resistance Tie, minimum weight, stiffness prescribed Beam, minimum weight, stiffness prescribed Beam, minimum weight, strength prescribed Beam, minimum cost, stiffness prescribed Beam, minimum cost, strength prescribed Column, minimum cost, buckling load prescribed... [Pg.46]

Another variable that needs to be set for distillation is refiux ratio. For a stand-alone distillation column, there is a capital-energy tradeoff, as illustrated in Fig. 3.7. As the refiux ratio is increased from its minimum, the capital cost decreases initially as the number of plates reduces from infinity, but the utility costs increase as more reboiling and condensation are required (see Fig. 3.7). If the capital... [Pg.77]

Figure 3.8a shows the temperature-composition diagram for a minimum-boiling azeotrope that is sensitive to changes in pressure. This azeotrope can be separated using two columns operating at different pressures, as shown in Fig. 3.86. Feed with mole fraction of A Ufa)) of, say, 0.3 is fed to the high-pressure column. The bottom product from this high-pressure column is relatively pure B, whereas the overhead is an azeotrope with jcda = 0-8, jcdb = 0.2. This azeotrope is fed to the low-pressure column, which produces relatively pure A in the bottom and in the overhead an azeotrope with jcda = 0.6, jcdb = 0.4. This azeotrope is added to the feed of the high-pressure column. Figure 3.8a shows the temperature-composition diagram for a minimum-boiling azeotrope that is sensitive to changes in pressure. This azeotrope can be separated using two columns operating at different pressures, as shown in Fig. 3.86. Feed with mole fraction of A Ufa)) of, say, 0.3 is fed to the high-pressure column. The bottom product from this high-pressure column is relatively pure B, whereas the overhead is an azeotrope with jcda = 0-8, jcdb = 0.2. This azeotrope is fed to the low-pressure column, which produces relatively pure A in the bottom and in the overhead an azeotrope with jcda = 0.6, jcdb = 0.4. This azeotrope is added to the feed of the high-pressure column.
The multicomponent form of the Underwood equation can be used to calculate the vapor flow at minimum reflux in each column of the sequence. The minimum vapor rate in a single column is obtained by alternate use of two equations ... [Pg.135]

Equation (5.3) can be written at minimum reflux and then at finite reflux, say, 1.1 times minimum reflux. The calculation is then repeated for all columns in the sequence. [Pg.136]

Porter and Momoh have suggested an approximate but simple method of calculating the total vapor rate for a sequence of simple columns. Start by rewriting Eq. (5.3) with the reflux ratio R defined as a proportion relative to the minimum reflux ratio iimin (typically R/ min = 1-D- Defining Rp to be the ratio Eq. (5.3) becomes... [Pg.136]

Distillation capital costs. The classic optimization in distillation is to tradeoff capital cost of the column against energy cost for the distillation, as shown in Fig. 3.7. This wpuld be carried out with distillation columns operating on utilities and not integrated with the rest of the process. Typically, the optimal ratio of actual to minimum reflux ratio lies in the range 1.05 to 1.1. Practical considerations often prevent a ratio of less than 1.1 being used, as discussed in Chap. 3. [Pg.349]

Hold-up of column. The hold-up of liquid should be reduced to a minimum compatible with scrubbing effectiveness and an adequate column capacity. The ratio of charge of the still to the hold-up of the... [Pg.95]

The minimum amount of energy required to remove the least strongly bound electron from a gaseous atom (or ion) is called the ionization energy and is expressed in MJ moE. Remember that 96.485 kJ = 1.000 eV = 23.0605 kcal. In Table 4.2 the successive stages of ionization are indicated by the heading of each column I denotes first spectra arising from a neutral atom viz.,... [Pg.281]

To increase the number of theoretical plates without increasing the length of the column, it is necessary to decrease one or more of the terms in equation 12.27 or equation 12.28. The easiest way to accomplish this is by adjusting the velocity of the mobile phase. At a low mobile-phase velocity, column efficiency is limited by longitudinal diffusion, whereas at higher velocities efficiency is limited by the two mass transfer terms. As shown in Figure 12.15 (which is interpreted in terms of equation 12.28), the optimum mobile-phase velocity corresponds to a minimum in a plot of H as a function of u. [Pg.562]

Since capillary tubing is involved in osmotic experiments, there are several points pertaining to this feature that should be noted. First, tubes that are carefully matched in diameter should be used so that no correction for surface tension effects need be considered. Next it should be appreciated that an equilibrium osmotic pressure can develop in a capillary tube with a minimum flow of solvent, and therefore the measured value of II applies to the solution as prepared. The pressure, of course, is independent of the cross-sectional area of the liquid column, but if too much solvent transfer were involved, then the effects of dilution would also have to be considered. Now let us examine the practical units that are used to express the concentration of solutions in these experiments. [Pg.550]

Hydrochloric acid [7647-01-0], which is formed as by-product from unreacted chloroacetic acid, is fed into an absorption column. After the addition of acid and alcohol is complete, the mixture is heated at reflux for 6—8 h, whereby the intermediate malonic acid ester monoamide is hydroly2ed to a dialkyl malonate. The pure ester is obtained from the mixture of cmde esters by extraction with ben2ene [71-43-2], toluene [108-88-3], or xylene [1330-20-7]. The organic phase is washed with dilute sodium hydroxide [1310-73-2] to remove small amounts of the monoester. The diester is then separated from solvent by distillation at atmospheric pressure, and the malonic ester obtained by redistillation under vacuum as a colorless Hquid with a minimum assay of 99%. The aqueous phase contains considerable amounts of mineral acid and salts and must be treated before being fed to the waste treatment plant. The process is suitable for both the dimethyl and diethyl esters. The yield based on sodium chloroacetate is 75—85%. Various low molecular mass hydrocarbons, some of them partially chlorinated, are formed as by-products. Although a relatively simple plant is sufficient for the reaction itself, a si2eable investment is required for treatment of the wastewater and exhaust gas. [Pg.467]

T.eflux Tatio. Generally, the optimum reflux ratio is below 1.15 and often below 1.05 minimum. At this point, excess reflux is a minor contributor to column inefficiency. When designing for this tolerance, correct vapor—Hquid equiUbrium (VLE) and adequate controls are essential. [Pg.85]

Reboiler. The case shown in Figure 8 is common for reboilers and condensers on distillation towers. Typically, this AThas a greater impact on excess energy use in distillation than does reflux beyond the minimum. The capital cost of the reboiler and condenser is often equivalent to the cost of the column they serve. [Pg.88]


See other pages where Columns minimum is mentioned: [Pg.65]    [Pg.253]    [Pg.77]    [Pg.65]    [Pg.172]    [Pg.240]    [Pg.65]    [Pg.253]    [Pg.77]    [Pg.65]    [Pg.172]    [Pg.240]    [Pg.78]    [Pg.271]    [Pg.714]    [Pg.160]    [Pg.95]    [Pg.554]    [Pg.25]    [Pg.182]    [Pg.446]    [Pg.69]    [Pg.72]    [Pg.77]    [Pg.523]    [Pg.381]    [Pg.544]    [Pg.43]    [Pg.75]    [Pg.36]    [Pg.94]   
See also in sourсe #XX -- [ Pg.376 , Pg.391 ]




SEARCH



© 2024 chempedia.info