Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatography model

Perkins, T.W., Mak, D.S., Root, T.W., and Lightfoot, E.N., Protein retention in hydrophobic interaction chromatography modeling variation with buffer ionic strength and column hydrophobicity, J. Chromatogr. A, 766, 1, 1997. [Pg.136]

Slusher, J.T. and Mountain, R.D., A molecular dynamics study of a reversed-phase liquid chromatography model, J. Phys. Chem. B, 103, 1354, 1999. [Pg.302]

Ishihara T, Kadoya T, Yamamoto S. Application of a chromatography model with linear gradient elution experimental data to the rapid sacle-up in ion-exchange process chromatography of proteins. Journal of Chromatography A 2007 1162 34-40. [Pg.56]

Exercise. Solve in the same way the chromatography model specified by (7.3). Show that the average drift velocity is v = giv. [Pg.190]

Sofer, G. Ensuring the accuracy of scaled-down chromatography models. Bio-Pharm 10 36-39 (1997). [Pg.274]

Weiss, G. H., Sokoloff, H. Zakharov, S. F., and Chrambach, A. (1996). Interpretation of electrophoretic band shapes by a partition chromatography model. Electrophoresis 17, 1325-1332. [Pg.298]

Experiments have been performed on a preparative SFC system using pure CO2 as the mobile phase under significant pressure drop. The retention times, pressure drop characteristics and the mass transfer behaviour were studied. The trends observed differ from the behaviour of HPLC systems. These trends also emphasize the complexity involved in analyzing the data for SFC measurements, which imply in turn greater complexity of the SFC model as compared to standard liquid chromatography model. [Pg.208]

Bellot, J. C., Condoret J. S. Liquid chromatography modelling a review, Process Biochem., 1991, 26, 363-376. [Pg.422]

All cases of practical importance in liquid chromatography deal with the separation of multicomponent feed mixtures. As shown in Chapter 2, the combination of the mass balance equations for the components of the feed, their isotherm equations, and a chromatography model that accounts for the kinetics of mass transfer between the two phases of the system permits the calculation of the individual band profiles of these compounds. To address this problem, we need first to understand, measure, and model the equilibrium isotherms of multicomponent mixtures. These equilibria are more complex than single-component ones, due to the competition between the different components for interaction with the stationary phase, a phenomenon that is imderstood but not yet predictable. We observe that the adsorption isotherms of the different compounds that are simultaneously present in a solution are almost always neither linear nor independent. In a finite-concentration solution, the amount of a component adsorbed at equilib-... [Pg.151]

The derivation of analytical expressions for the moments of a band in chromatography is tedious. It involves successive differentiations of the Laplace transform solution of the chromatography model used. Several more expedient methods have been proposed to simplify these derivations for axial chromatography [43,44]. A simple and generalized method was described by Lee et al. [45] for the moments in chromatographic elution peaks with any geometric configuration (axial or radial) and any kinetic models. [Pg.311]

Janson and Hedman (1) recently published an excellent review of large-scale chromatography. Many of the broad process design and operation considerations are the same for affinity chromatography as they are for ion exchange or gel filtration. Most chromatography models, however, are based on the assumption of small feed pulses with linear equilibria (such as the widely-used plate theories (2)) and are not directly useful for affinity separations. In this paper we discuss and compare experimental results with two fixed-bed adsorption models that can be used to predict the performance of affinity columns. These two models differ only in the form of the rate-... [Pg.117]

Gas Chromatography, Model F45, Head Space Analyzer, Perkin-Elmer, Offenbach, G.F.R., 1978. [Pg.83]

Liquid chromatography modelling a review. Process Biochem., 26, 363-376. [Pg.418]

Dry Lab Chromatography Modeling, LC Resources, Walnut Creek, CA, Spring 1994. S. M. Hitchen, HiPac Chromatography Optimisation Software, Phase Separations, Deeside, UK (1992). [Pg.177]

At present, the molecular recognition of CD and its derivatives has been successfully applied in antimer compounds, stereoselective separation in chromatography, modeling enzyme and enantioselective catalyzed reactions [46]. [Pg.202]

The work was continued on the paper chromatography modeling of UF oligomers [72]. In this series of experiments the limits of the molecular mechanics approach finally started to become apparent. While a good trend correspondence with experimental Rf values was again obtained within each of the two series of UF oligomers tested, correspondence was lost when one tried to compare the compounds within a series with the compounds of the other series. Thus, excellent correspondence existed within the homo-... [Pg.180]

A multiple nonreactive tracer technique was utilized to identify physical nonequilibrium processes, e.g., coupled preferential flow and matrix dif ion (21, 24, 25). Three nonreactive tracers, Br, pentafluorobenzoic acid (PFBA), and piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES), were used, which differ only in their flee water molecular difiiision coefficient, thus physical nonequilibrium may be inferred by observed sqiaration of the tracers. Influent concentrations of the nonreactive tracers were O.S mM (Br, PFBA) and 1-0 mM (PIPES). Only Bf was utilized in the repacked column eiqieriments, because physical nonequilibrium as a result of sedimentary stracture is eiqiected to be minimal in repacked media. Analyses were acconqilished using UV detection (190 nm) and low pressure liquid chromatography (Model DX-600, Dionex Corp, Sunnyvale, CA). [Pg.235]

He L.C, Wang S.C. 2001. Establishment and preliminary application of vascular endothelial cell membrane chromatography model. Chromatographia, 56 60-64. [Pg.399]


See other pages where Chromatography model is mentioned: [Pg.95]    [Pg.557]    [Pg.230]    [Pg.252]    [Pg.252]    [Pg.312]    [Pg.414]    [Pg.72]    [Pg.13]    [Pg.302]    [Pg.405]    [Pg.425]    [Pg.281]    [Pg.341]    [Pg.341]    [Pg.71]    [Pg.638]    [Pg.218]    [Pg.419]    [Pg.81]    [Pg.395]    [Pg.399]    [Pg.178]    [Pg.178]   
See also in sourсe #XX -- [ Pg.403 ]




SEARCH



Adsorption chromatography Kowalska model

Adsorption chromatography competition model

Adsorption chromatography solvent interaction model

Axial Dispersion Model for a Chromatography Column

Band Profiles in Displacement Chromatography with the Ideal Model

CHROMDIFF - Dispersion Model for Chromatography Columns

Chromatography axial dispersion model

Chromatography difference equation model

Chromatography equilibrium model

Chromatography ideal model

Chromatography plate models

Chromatography rate model

Chromatography retention models

Chromatography stage model

Chromatography transport model

Column chromatography mass-transfer model

Dispersive model of chromatography

Dynamic difference equation model for chromatography

Equilibrium-dispersive model displacement chromatography

Experimental data modeling chromatography

Extension of Linear to Nonlinear Chromatography Models

Gradient elution chromatography VERSE model

Ideal model of chromatography

Ideal model, nonlinear chromatography

Kowalska model of adsorption and partition chromatography

Linear chromatography statistical model

Liquid-solid chromatography retention models

Lumped kinetic models, chromatography

Mass balance models, chromatography

Mathematical Modeling of Gas-Solid Chromatography

Modeling in Chiral Chromatography

Models for Preparative Chromatography

Models of linear chromatography

Monte Carlo model of nonlinear chromatography

Partial least squares model chromatography

Partition chromatography Martin-Synge model

Regional chromatography model

Snyder-Soczewinski model of adsorption chromatography

The Design of Model Phases for Chromatography

The General Rate Model of Chromatography

The Ideal Model in Gas Chromatography

The Monte Carlo Model of Nonlinear Chromatography

Water-surface effects modeling chromatography model

© 2024 chempedia.info