Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatography acids using

Three techniques, one of which is ion chromatography, are used to determine the concentrations of three ions in solution. The combined concentrations of Na+ and K+ are determined by an ion exchange with H+, the concentration of which is subsequently determined by an acid-base... [Pg.613]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

Chemical stabiUty studies are monitored by siUca gel thin-layer chromatography (dc) or by high performance Hquid chromatography (hplc) using a reverse-phase C g coated column (24). Hplc peaks or dc spots are visualized by thek uv absorption at 245 nm the tic spots can also be detected by ceric sulfate or phosphomolybdic acid staining. [Pg.281]

Trace impurities present in commercial benzoic acid include methyl diphenyls and phthaHc acids. The concentration and presence of these impurities vary by product grade and by manufacturer. Gas chromatography and high pressure Hquid chromatography are useful for determining the concentrations of those impurities. [Pg.54]

Polymerization-grade chloroprene is typically at least 99.5% pure, excluding inert solvents that may be present. It must be substantially free of peroxides, polymer [9010-98-4], and inhibitors. A low, controlled concentration of inhibitor is sometimes specified. It must also be free of impurities that are acidic or that will generate additional acidity during emulsion polymerization. Typical impurities are 1-chlorobutadiene [627-22-5] and traces of chlorobutenes (from dehydrochlorination of dichlorobutanes produced from butenes in butadiene [106-99-0]), 3,4-dichlorobutene [760-23-6], and dimers of both chloroprene and butadiene. Gas chromatography is used for analysis of volatile impurities. Dissolved polymer can be detected by turbidity after precipitation with alcohol or determined gravimetrically. Inhibitors and dimers can interfere with quantitative determination of polymer either by precipitation or evaporation if significant amounts are present. [Pg.39]

The advantages of this method are a short reaction time and the nonfluorescence of the OPA reagent. Therefore, excess reagent must not be removed before the chromatography stage. Using this method, it is possible to measure tryptophan, but not secondary amino acids such as proline or hydroxyproline. Cysteine and cystine can be measured, but because of the low fluorescence of their derivatives, they must be detected using an UV system, or alternatively oxidized to cysteic acid before reaction. [Pg.192]

The evaluation of acetaldehyde oxidation process was carried out by aeration of acetaldehyde solution and analyzing the concentration of acetic acid using gas chromatography HP 5890 with detector FID equipped with PEG Column in 15 minutes time interval. The gas flow rate Qg), impeller rotation speed N) and temperature (7) were varied. [Pg.222]

Reliable analytical methods are available for determination of many volatile nitrosamines at concentrations of 0.1 to 10 ppb in a variety of environmental and biological samples. Most methods employ distillation, extraction, an optional cleanup step, concentration, and final separation by gas chromatography (GC). Use of the highly specific Thermal Energy Analyzer (TEA) as a GC detector affords simplification of sample handling and cleanup without sacrifice of selectivity or sensitivity. Mass spectrometry (MS) is usually employed to confirm the identity of nitrosamines. Utilization of the mass spectrometer s capability to provide quantitative data affords additional confirmatory evidence and quantitative confirmation should be a required criterion of environmental sample analysis. Artifactual formation of nitrosamines continues to be a problem, especially at low levels (0.1 to 1 ppb), and precautions must be taken, such as addition of sulfamic acid or other nitrosation inhibitors. The efficacy of measures for prevention of artifactual nitrosamine formation should be evaluated in each type of sample examined. [Pg.331]

Males et al. [103] used aqueous mobile phase with formic acid for the separation of flavonoids and phenolic acids in the extract of Sambuci flos. In a cited paper, authors listed ten mobile phases with addition of acids used by other investigators for chromatography of polyphenolic material. For micropreparative separation and isolation of antraquinone derivatives (aloine and aloeemodine) from the hardened sap of aloe (Liliaceae family), Wawrzynowicz et al. used 0.5-mm silica precoated plates and isopropanol-methanol-acetic acid as the mobile phase [104]. The addition of small amounts of acid to the mobile phase suppressed the dissociation of acidic groups (phenolic, carboxylic) and thus prevented band diffusions. [Pg.265]

Grosjean, D. J., Van Neste, A., and Parmar, S. S., Analysis of atmospheric carboxylic acids using single column ion exclusion chromatography with ultraviolet detection, J. Liq. Chromatogr., 12, 3007, 1989. [Pg.276]

The related substances are determined by gas chromatography (GC) using butyric acid as the internal standard, and the method requires preparation of the following three solutions. [Pg.225]

Several methods have been used to separate the lanthanides chemically solvent extraction, ion exchange chromatography, HPLC using Q-hydroxyisobutyric acid and, in limited cases, selective reduction of a particular metal cation.40-43 The use of di(2-ethylhexyl)orthophosphoric acid (HDEHP) for the separation of various rare-earth elements via solvent extraction has also been reported.44 16 This separation method is based on the strong tendency of Ln3+ ions to form complexes with various anions (i.e., Cl- or N03 ) and their wide range of affinities for com-plexation to dialkyl orthophosphoric acid. When the HDEHP is attached to a solid phase resin, the lanthanides can be selected with various concentrations of acid in order of size, with the smallest ion being the most highly retained. [Pg.889]

Corr, L. T., Berstan, R. and Evershed, R. P. (2007a) Development of N acetyl methyl ester derivatives for the determination of 813C values of amino acids using gas chromatography combustion isotope ratio mass spectrometry. Analytical Chemistry 79, 9082 9090. [Pg.425]


See other pages where Chromatography acids using is mentioned: [Pg.54]    [Pg.25]    [Pg.272]    [Pg.538]    [Pg.51]    [Pg.178]    [Pg.1031]    [Pg.161]    [Pg.203]    [Pg.404]    [Pg.4]    [Pg.179]    [Pg.283]    [Pg.220]    [Pg.121]    [Pg.7]    [Pg.222]    [Pg.638]    [Pg.225]    [Pg.321]    [Pg.115]    [Pg.822]    [Pg.481]    [Pg.226]    [Pg.251]    [Pg.376]    [Pg.378]    [Pg.431]    [Pg.173]    [Pg.5]    [Pg.207]    [Pg.29]    [Pg.813]    [Pg.445]    [Pg.287]    [Pg.60]   
See also in sourсe #XX -- [ Pg.1066 , Pg.1067 ]




SEARCH



Analysis of organic acids using gas chromatography

Chromatography acids

Thin-layer chromatography acids using

© 2024 chempedia.info