Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic systems mobile phase

Prior to the evaluation of solubility and partition data of various solutes, the partition systems and the relevant parameters need to be defined. In the static equilibrium experiments, the notation, solvent (C°)/gel (Cg), refers to the transfer of a solute from the static solvent phase to the gel phase, C° and Cg indicating the molar equilibrium concentrations of the solute in the two phases. When the equilibrium experiment is performed at the saturation of the solute, C° and Cg refer to the solubilities in the external solvent and in the gel phase, respectively. In the gel chromatographic system, mobile phase (C jj)/ gel (Cg, Kgy) refers to the transfer of a solute from the mobile phase to the gel phase, C and Cg indicating the equilibrium molar concentrations of the solute in the two phases, which are correlated each other by Cg/Cuj = The notation, mobile phase (Cjjj)/gel (C°, K° )i applies to the ideal chromatographic transfer process where the distribution coefficient (K° ) Is determined solely by the steric exclusion effect of the gel matrices without any differential interactions of the solute with the two phases. The experimental determination of is subject to some uncertainty as it is difficult to establish such an ideal condition. By inclusion of urea (ref. 40,41,73) and methanol (ref. 41) in the eluents effects other than the purely steric can largely be eliminated, but there is no direct method to confirm the absence of additional gel-solute interactions. This will be further examined later. All the transfer parameters given below are the apparent quantities evaluated using the observed molar concentration data. [Pg.42]

HSCCC is attracting attention based on its high separation scale, 100% recovery of sample, and mild operating conditions. It is a chromatographic separation process based on the partition coefficients of different analytes in two immiscible solvent systems (mobile phase and stationary phase) subjected to a centrifugal acceleration field. [Pg.488]

In practice, prior to beginning the actual process of optimization of the experimental conditions of a preparative separation, extraction, or purification, it is necessary to perform the choice of the chromatographic system to be used. This requires the measurement of the most important characteristics of the performance of several combinations of stationary and mobile phase combinations. It is imperative to maximize the selectivity of the chromatographic system while making sure that its capacity is important. The feed solubility in the mobile phase must be high and the saturation capacity of the stationary phase important. The actual focus of this chapter is the optimization process following the selection of the chromatographic system (mobile and stationary phases). [Pg.851]

Inject racemic A-(l-naphthyl)leucine ester 1 onto this column connected to a Beckman HPLC analytical gradient system. Chromatographic conditions mobile phase, 20% chloroform in heptane flow rate, 1.2 mL/min UV detection at 254 nm. [Pg.211]

The chromatographic system (mobile + stationary phase, temperature) is calibrated using solutes with known descriptors to establish its system parameters. Once the later are known, the retention factors of any solute whose LSER descriptors are known can be predicted on this particular chromatographic system. [Pg.25]

Chromatographic separations are accomplished by continuously passing one sample-free phase, called a mobile phase, over a second sample-free phase that remains fixed, or stationary. The sample is injected, or placed, into the mobile phase. As it moves with the mobile phase, the sample s components partition themselves between the mobile and stationary phases. Those components whose distribution ratio favors the stationary phase require a longer time to pass through the system. Given sufficient time, and sufficient stationary and mobile phase, solutes with similar distribution ratios can be separated. [Pg.546]

As described above, the mobile phase carrying mixture components along a gas chromatographic column is a gas, usually nitrogen or helium. This gas flows at or near atmospheric pressure at a rate generally about 0,5 to 3.0 ml/min and evenmally flows out of the end of the capillary column into the ion source of the mass spectrometer. The ion sources in GC/MS systems normally operate at about 10 mbar for electron ionization to about 10 mbar for chemical ionization. This large pressure... [Pg.254]

In the analytical chromatographic process, mixtures are separated either as individual components or as classes of similar materials. The mixture to be separated is first placed in solution, then transferred to the mobile phase to move through the chromatographic system. In some cases, irreversible interaction with the column leaves material permanently attached to the stationary phase. This process has two effects because the material is permanently attached to the stationary phase, it is never detected as leaving the column and the analysis of the mixture is incomplete additionally, the adsorption of material on the stationary phase alters the abiHty of that phase to be used in future experiments. Thus it is extremely important to determine the ultimate fate of known materials when used in a chromatographic system and to develop a feeling for the kinds of materials in an unknown mixture before use of a chromatograph. [Pg.105]

In the course of mixture separation, the composition and properties of both mobile phase (MP) and stationary phase (SP) are purposefully altered by means of introduction of some active components into the MP, which are absorbed by it and then sorbed by the SP (e.g. on a silica gel layer). This procedure enables a new principle of control over chromatographic process to be implemented, which enhances the selectivity of separation. As a possible way of controlling the chromatographic system s properties in TLC, the pH of the mobile phase and sorbent surface may be changed by means of partial air replacement by ammonia (a basic gaseous component) or carbon dioxide (an acidic one). [Pg.99]

Distribution of benzodiazepines in I-octanol - water system was investigated by a direct shake flask method at the presence of the compounds used in HPLC mobile phases the phosphate buffer with pH 6,87 (substances (I) - (II)), acetic and phosphate buffer, perchloric acid at pH 3 (substances (III) - (VI)). Concentrations of substances in an aqueous phase after distribution controlled by HPLC (chromatograph Hewlett Packard, column Nucleosil 100-5 C, mobile phase acetonitrile - phosphate buffer solution with pH 2,5, 30 70 (v/v)). [Pg.392]

This type of chromatographic development will only be briefly described as it is rarely used and probably is of academic interest only. This method of development can only be effectively employed in a column distribution system. The sample is fed continuously onto the column, usually as a dilute solution in the mobile phase. This is in contrast to displacement development and elution development, where discrete samples are placed on the system and the separation is subsequently processed. Frontal analysis only separates part of the first compound in a relatively pure state, each subsequent component being mixed with those previously eluted. Consider a three component mixture, containing solutes (A), (B) and (C) as a dilute solution in the mobile phase that is fed continuously onto a column. The first component to elute, (A), will be that solute held least strongly in the stationary phase. Then the... [Pg.8]

It is clear that the separation ratio is simply the ratio of the distribution coefficients of the two solutes, which only depend on the operating temperature and the nature of the two phases. More importantly, they are independent of the mobile phase flow rate and the phase ratio of the column. This means, for example, that the same separation ratios will be obtained for two solutes chromatographed on either a packed column or a capillary column, providing the temperature is the same and the same phase system is employed. This does, however, assume that there are no exclusion effects from the support or stationary phase. If the support or stationary phase is porous, as, for example, silica gel or silica gel based materials, and a pair of solutes differ in size, then the stationary phase available to one solute may not be available to the other. In which case, unless both stationary phases have exactly the same pore distribution, if separated on another column, the separation ratios may not be the same, even if the same phase system and temperature are employed. This will become more evident when the measurement of dead volume is discussed and the importance of pore distribution is considered. [Pg.28]

Having established that a finite volume of sample causes peak dispersion and that it is highly desirable to limit that dispersion to a level that does not impair the performance of the column, the maximum sample volume that can be tolerated can be evaluated by employing the principle of the summation of variances. Let a volume (Vi) be injected onto a column. This sample volume (Vi) will be dispersed on the front of the column in the form of a rectangular distribution. The eluted peak will have an overall variance that consists of that produced by the column and other parts of the mobile phase conduit system plus that due to the dispersion from the finite sample volume. For convenience, the dispersion contributed by parts of the mobile phase system, other than the column (except for that from the finite sample volume), will be considered negligible. In most well-designed chromatographic systems, this will be true, particularly for well-packed GC and LC columns. However, for open tubular columns in GC, and possibly microbore columns in LC, where peak volumes can be extremely small, this may not necessarily be true, and other extra-column dispersion sources may need to be taken into account. It is now possible to apply the principle of the summation of variances to the effect of sample volume. [Pg.194]

The explicit form of those equations that satisfy the preliminary data criteria, must then be tested against a series of data sets that have been obtained from different chromatographic systems. As an example, such systems might involve columns packed with different size particles, employed mobile phases or solutes having different but known physical properties such as diffusivity or capacity ratios (k"). [Pg.316]

The problem is made more difficult because these different dispersion processes are interactive and the extent to which one process affects the peak shape is modified by the presence of another. It follows if the processes that causes dispersion in mass overload are not random, but interactive, the normal procedures for mathematically analyzing peak dispersion can not be applied. These complex interacting effects can, however, be demonstrated experimentally, if not by rigorous theoretical treatment, and examples of mass overload were included in the work of Scott and Kucera [1]. The authors employed the same chromatographic system that they used to examine volume overload, but they employed two mobile phases of different polarity. In the first experiments, the mobile phase n-heptane was used and the sample volume was kept constant at 200 pi. The masses of naphthalene and anthracene were kept... [Pg.428]

There is no other facet where thin-layer chromatography reveals its paper-chromatographic ancestry more clearly than in the question of development chambers (Fig. 56). Scaled-down paper-chromatographic chambers are still used for development to this day. From the beginning these possessed a vapor space, to allow an equilibration of the whole system for partition-chromatographic separations. The organic mobile phase was placed in the upper trough after the internal space of the chamber and, hence, the paper had been saturated, via the vapor phase, with the hydrophilic lower phase on the base of the chamber. [Pg.124]


See other pages where Chromatographic systems mobile phase is mentioned: [Pg.212]    [Pg.1103]    [Pg.1696]    [Pg.1031]    [Pg.3]    [Pg.212]    [Pg.1103]    [Pg.1696]    [Pg.1031]    [Pg.3]    [Pg.403]    [Pg.243]    [Pg.255]    [Pg.129]    [Pg.204]    [Pg.890]    [Pg.13]    [Pg.130]    [Pg.172]    [Pg.24]    [Pg.215]    [Pg.246]    [Pg.248]    [Pg.262]    [Pg.105]    [Pg.107]    [Pg.1599]    [Pg.98]    [Pg.61]    [Pg.10]    [Pg.12]    [Pg.17]    [Pg.19]    [Pg.62]    [Pg.143]    [Pg.232]    [Pg.255]    [Pg.259]    [Pg.295]    [Pg.5]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Chromatographic mobility

Chromatographic phases

Chromatographic system

Mobile phase chromatograph

Mobile phase systems

Mobile systems

© 2024 chempedia.info