Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chromatographic processes stationary phases

Seleetion of basic parameters of chromatographic process (stationary phase, proper pure solvents according to Snyder s classification, and vapor phase)... [Pg.92]

A similar study was realized to study the desorption process of Dil from fused silica and silica gel. The measurements indicated that the strong adsorption sites on the surface of fused silica and chromatographic silica stationary phases are chemically identical [170],... [Pg.495]

The demand for mixed oxide chromatographic-quality stationary phase materials is small and only a few methods that detail their preparation are available in the hterature. There are, however, numerous examples of the preparation of zircon powders and Ref. [4] is an example of such a process. In general, these types of powders are unsuitable for chromatographic stationary phases because their particle sizes are in the submicron range with very broad distributions. The synthesis of mixed oxide supports for chromatographic apphcations can essentially be divided into two types coprecipitation methods and coating methods. [Pg.1739]

In the analytical chromatographic process, mixtures are separated either as individual components or as classes of similar materials. The mixture to be separated is first placed in solution, then transferred to the mobile phase to move through the chromatographic system. In some cases, irreversible interaction with the column leaves material permanently attached to the stationary phase. This process has two effects because the material is permanently attached to the stationary phase, it is never detected as leaving the column and the analysis of the mixture is incomplete additionally, the adsorption of material on the stationary phase alters the abiHty of that phase to be used in future experiments. Thus it is extremely important to determine the ultimate fate of known materials when used in a chromatographic system and to develop a feeling for the kinds of materials in an unknown mixture before use of a chromatograph. [Pg.105]

In the course of mixture separation, the composition and properties of both mobile phase (MP) and stationary phase (SP) are purposefully altered by means of introduction of some active components into the MP, which are absorbed by it and then sorbed by the SP (e.g. on a silica gel layer). This procedure enables a new principle of control over chromatographic process to be implemented, which enhances the selectivity of separation. As a possible way of controlling the chromatographic system s properties in TLC, the pH of the mobile phase and sorbent surface may be changed by means of partial air replacement by ammonia (a basic gaseous component) or carbon dioxide (an acidic one). [Pg.99]

This type of chromatographic development will only be briefly described as it is rarely used and probably is of academic interest only. This method of development can only be effectively employed in a column distribution system. The sample is fed continuously onto the column, usually as a dilute solution in the mobile phase. This is in contrast to displacement development and elution development, where discrete samples are placed on the system and the separation is subsequently processed. Frontal analysis only separates part of the first compound in a relatively pure state, each subsequent component being mixed with those previously eluted. Consider a three component mixture, containing solutes (A), (B) and (C) as a dilute solution in the mobile phase that is fed continuously onto a column. The first component to elute, (A), will be that solute held least strongly in the stationary phase. Then the... [Pg.8]

It is clear that such a surface offers a wide range of sorption and displacement processes that can take place between the solute and the stationary phase surface. Due to the bi-layer formation there are three different surfaces on which a molecule can interact by sorption and three different surfaces from which molecules of solvent can be displaced and allow the solute molecule to penetrate to the next layer. During a chromatographic separation under these circumstances, all the alternatives are possible. Nevertheless, depending on the magnitude of the forces between the solute molecule and the molecules in each layer, it is likely that one particular type of interaction will dominate. The various types of interaction are included in Figure 11. [Pg.100]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

At the current time, there is considerable interest in the preparative applications of liquid chromatography. In order to enhance the chromatographic process, attention is now focused on the choice of the operating mode [22]. SMB offers an alternative to classical processes (batch elution chromatography) in order to minimize solvent consumption and to maximize productivity where expensive stationary phases are used. [Pg.256]

The support materials for the stationary phase can be relatively inactive supports, e.g. glass beads, or adsorbents similar to those used in LSC. It is important, however, that the support surface should not interact with the solute, as this can result in a mixed mechanism (partition and adsorption) rather than true partition. This complicates the chromatographic process and may give non-reproducible separations. For this reason, high loadings of liquid phase are required to cover the active sites when using high surface area porous adsorbents. [Pg.218]

We think, therefore, that the conformation, chain and segment mobilities in the attached macromolecules can play a significant role in the shielding behavior of the polymeric stationary phase as well as in the processes of its formation of complexes with solutes. Obviously, the chromatographic studies relevant to composite supports suffer from a lack of information on the structure of the attached polymer. Nevertheless, we will attempt to point out some relevant data from independent studies on polymer adsorption and/or graft polymerization. [Pg.138]

The chromatographic column has a dichotomy of purpose. During a separation, two processes ensue in the column, continuously, progressively and virtually independent of one another. Firstly, the individual solutes are moved apart as a result of the differing distribution coefficients of each component with respect to the stationary phase in the manner previously described. Secondly, having moved the individual components apart, the column is designed to constrain the natural dispersion of each solute band (i.e. the band... [Pg.15]

HSCCC is attracting attention based on its high separation scale, 100% recovery of sample, and mild operating conditions. It is a chromatographic separation process based on the partition coefficients of different analytes in two immiscible solvent systems (mobile phase and stationary phase) subjected to a centrifugal acceleration field. [Pg.488]

The problem of transport of molecules through swollen gels is of general interest. It not only pertains to catalysis, but also to the field of chromatographic separations over polymeric stationary phases, where the partition of a solute between the mobile phase (liquid phase) and a swollen polymeric stationary phase (gel phase) is a process of the utmost importance. As with all the chemical and physicochemical processes, the thermodynamic and the kinetic aspect must be distinguished also in partition between phases. [Pg.219]

The model, therefore, predicts the elution behavior of solutes during a chromatographic process over a swollen gel as the stationary phase as a function of solute size and of the gel nanomorphology. On the reverse, from the elution behavior of solutes of known molecular size it is possible to extract the polymer chain concentration from chromatographic experiments, where an unknown swollen gel is the stationary phase. This is the basis of the ISEC, which is so often mentioned through this chapter [16,17,105,106]. [Pg.219]


See other pages where Chromatographic processes stationary phases is mentioned: [Pg.561]    [Pg.248]    [Pg.226]    [Pg.106]    [Pg.106]    [Pg.108]    [Pg.108]    [Pg.1530]    [Pg.98]    [Pg.253]    [Pg.4]    [Pg.12]    [Pg.17]    [Pg.104]    [Pg.210]    [Pg.232]    [Pg.76]    [Pg.77]    [Pg.94]    [Pg.265]    [Pg.7]    [Pg.10]    [Pg.60]    [Pg.165]    [Pg.165]    [Pg.262]    [Pg.5]    [Pg.72]    [Pg.90]    [Pg.111]    [Pg.21]    [Pg.429]    [Pg.64]    [Pg.79]   
See also in sourсe #XX -- [ Pg.534 ]




SEARCH



Chromatographic phases

Chromatographic processes

Chromatographic stationary phase

Phase processes

Process chromatograph

Process chromatographs

Stationary process

© 2024 chempedia.info