Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine addition reaction

The addition of chlorine to the chloroethylenes has been the most carefully studied of the various chlorine addition reactions. The rate coefficients are also calculated here by using an internal standard, the rate of chlorination of propane, and the k s therefore, depend on the validity of that value (log k = 11.01 — 0.98/2.31 T) as measured by Fettis and Knox... [Pg.123]

There are significant differences between the bromine addition and chlorine addition reactions, however. The addition reaction of ethene and chlorine is exothermic by 44 kcal/mol, which is 15 kcal/mol more exothermic than the addition of ethene and bromine. Poutsma noted that addition of chlorine to alkenes in nonpolar solvents can occur by either radical or ionic pathways, but that oxygen inhibits the radical reaction. For example, addition of chlorine to neat (i.e., not diluted by solvent) cyclohexene (19) gave frans-l,2-dichlorocyclohexane (20), 3-chlorocyclohexene (21), and 4-chloro-cyclohexene (22) in a 1.95 1.00 0.60 ratio when the reaction was carried out imder a nitrogen atmosphere. In the presence of oxygen, the ratio was 3-4 1.00 0. ... [Pg.576]

Benzene can undergo addition reactions which successively saturate the three formal double bonds, e.g. up to 6 chlorine atoms can be added under radical reaction conditions whilst catalytic hydrogenation gives cyclohexane. [Pg.55]

Chlorine Addition. Chlorine addition and some chlorine substitution occurs at normal or slightly elevated temperatures in the absence of catalysts. The chlorination of molten naphthalene under such conditions yields a mixture of naphthalene tetrachlorides, a monochloronaphthalene tetrachloride, and a dichloronaphthalene tetrachloride, as well as mono- and dichloronaphthalenes (35). Sunlight or uv radiation initiates the addition reaction of chlorine and naphthalene resulting in the production of the di- and tetrachlorides (36). These addition products are relatively unstable and, at ca 40—50°C, they decompose to form the mono- and dichloronaphthalenes. [Pg.484]

The propylene double bond consists of a (7-bond formed by two ovedapping orbitals, and a 7t-bond formed above and below the plane by the side overlap of two p orbitals. The 7t-bond is responsible for many of the reactions that ate characteristic of alkenes. It serves as a source of electrons for electrophilic reactions such as addition reactions. Simple examples are the addition of hydrogen or a halogen, eg, chlorine ... [Pg.124]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Vinyhdene chloride polymeri2es by both ionic and free-radical reactions. Processes based on the latter are far more common (23). Vinyhdene chloride is of average reactivity when compared with other unsaturated monomers. The chlorine substituents stabih2e radicals in the intermediate state of an addition reaction. Because they are also strongly electron-withdrawing, they polari2e the double bond, making it susceptible to anionic attack. For the same reason, a carbonium ion intermediate is not favored. [Pg.428]

The dkect high temperature chlorination of propylene continues to be the primary route for the commercial production of aHyl chloride. The reaction results in aHyl chloride selectivities of 75—80% from propylene and about 75% from chlorine. Additionally, a significant by-product of this reaction, 1,3-dichloropropene, finds commercial use as an effective nematocide when used in soil fumigation. Overall efficiency of propylene and chlorine use thus is significantly increased. Remaining by-products include 1,2-dichloropropane, 2-chloropropene, and 2-chloropropane. [Pg.32]

These values assume chlorination in carbon tetrachloride solution under homogeneous conditions favoring random distribution of chlorine atoms along the chain. Viscous reaction conditions, faster chlorine addition rates, lower temperature conditions, etc, can lead to higher AH at equivalent chlorine levels because of more blocky chlorine distribution on the polymer chain. [Pg.490]

These effects can be attributed mainly to the inductive nature of the chlorine atoms, which reduces the electron density at position 4 and increases polarization of the 3,4-double bond. The dual reactivity of the chloropteridines has been further confirmed by the preparation of new adducts and substitution products. The addition reaction competes successfully, in a preparative sense, with the substitution reaction, if the latter is slowed down by a low temperature and a non-polar solvent. Compounds (12) and (13) react with dry ammonia in benzene at 5 °C to yield the 3,4-adducts (IS), which were shown by IR spectroscopy to contain little or none of the corresponding substitution product. The adducts decompose slowly in air and almost instantaneously in water or ethanol to give the original chloropteridine and ammonia. Certain other amines behave similarly, forming adducts which can be stored for a few days at -20 °C. Treatment of (12) and (13) in acetone with hydrogen sulfide or toluene-a-thiol gives adducts of the same type. [Pg.267]

D. 3,3-Diahlarothietane 1,1-dioxide. Thietane 1,1-dioxide (5.0 g, 0.047 mol) Is placed In a 500-mL, three-necked, round-bottomed flask equipped with a reflux condenser, magnetic stirrer, and chlorine gas bubbler. Carbon tetrachloride (350 mL) Is added and the solution Is irradiated with a 250-watt sunlamp (Note 5) while chlorine Is bubbled through the stirred mixture for 1 hr (Note 9). Irradiation and chlorine addition are stopped and the reaction mixture is allowed to cool to room temperature. The product Is collected by filtration as a white solid (4.0-4.4 g, 49-53%), mp 156-158°C (Note 10). The product can be used without further purification or It can be recrystallized from chloroform. [Pg.212]

The control of the reaction was based on the assumption that stopping the flow of chlorine would stop all reaction this was true on the pilot unit but not on the full-scale plant. On the pilot unit, there was no stirrer, as the incoming chlorine gave sufficient mixing. When chlorine addition stopped, mixing also stopped and so did the reaction. On the full-scale plant, a stiirer was necessary, and this continued in operation after chlorine addition stopped. In addition, on the pilot unit the cooling was sufficient to hide any continuing reaction that did occur. [Pg.382]

Condensation of sodium phenoxide witli 2,2,2-trifluoroethyl iodide gives a product of direct substitution in a low yield, several other ethers are formed by eliminatton-addition reactions [7] Use of mesylate as a leaving group and hex amethyl phosphoramide (HMPA) as a solvent increases the yield of the substitution [S] Even chlorine can be replaced when the condensation is performed with potassium fluoride and acetic acid at a high temperature [9] (equations 6-8)... [Pg.447]

HC1, HBr, and HI add to alkenes by a two-step electrophilic addition mechanism. Initial reaction of the nucleophilic double bond with H+ gives a carbo-cation intermediate, which then reacts with halide ion. Bromine and chlorine add to alkenes via three-membered-ring bromonium ion or chloronium ion intermediates to give addition products having anti stereochemistry. If water is present during the halogen addition reaction, a halohydrin is formed. [Pg.246]

The Lead-Off Reaction Addition of HBr to Alkenes Students usually attach great-importance to a text s lead-off reaction because it is the first reaction they see and is discussed in such detail. 1 use the addition of HBr to an alkene as the lead-off to illustrate general principles of organic chemistry for several reasons the reaction is relatively straightforward it involves a common but important functional group no prior knowledge of stereochemistry or kinetics in needed to understand it and, most important, it is a polar reaction. As such, 1 believe that electrophilic addition reactions represent a much more useful and realistic introduction to functional-group chemistry than a lead-off such as radical alkane chlorination. [Pg.1335]

The stereoselectivity of an addition reaction is considerably lower when the reactions are conducted in polar solvents, complexing additives such as /V./V,A. A, -tetramethylethylenedi-arnine arc used, or when the stereogenic center carries a methoxy group instead of a hydroxy group. This behavior is explained as competition between the cyclic model and a dipolar model, proposed for carbonyl compounds bearing a polar substituent such as chlorine with a highly... [Pg.2]

The HCl produced in this reaction is used in an oxychlorination reaction to chlorinate additional ethylene ... [Pg.1538]

Example 14.1 Consider again the chlorination reaction in Example 7.3. This was examined as a continuous process. Now assume it is carried out in batch or semibatch mode. The same reactor model will be used as in Example 7.3. The liquid feed of butanoic acid is 13.3 kmol. The butanoic acid and chlorine addition rates and the temperature profile need to be optimized simultaneously through the batch, and the batch time optimized. The reaction takes place isobarically at 10 bar. The upper and lower temperature bounds are 50°C and 150°C respectively. Assume the reactor vessel to be perfectly mixed and assume that the batch operation can be modeled as a series of mixed-flow reactors. The objective is to maximize the fractional yield of a-monochlorobutanoic acid with respect to butanoic acid. Specialized software is required to perform the calculations, in this case using simulated annealing3. [Pg.295]

The most straightforward way to operate such a process is to maintain a constant chlorine addition rate and a constant temperature. However, both the constant value of the chlorine addition rate and the fixed temperature should be optimized. The temperature of the reaction system is allowed to vary within the set temperature range, but kept constant throughout a batch cycle. The batch time is divided into twenty time... [Pg.295]

The final option is to allow both the chlorine addition profile and temperature profile to be varied through the batch. The optimization shows a further improvement of the objective to 99.8%. It requires 1.35 h of batch cycle time and 75.0 kmol of chlorine. The optimized profiles for reaction temperature and feed addition rate of chlorine are shown in Figure 14.5. [Pg.296]

The addition of chlorine or bromine to benzene—one of the few overall addition reactions of a simple benzene nucleus—has also been shown to proceed via a radical pathway, i.e. it is catalysed by light and by the addition of peroxides, and is slowed or prevented by the usual inhibitors. With chlorine this presumably proceeds ... [Pg.316]

Addition reactions with bromine, chlorine, hydrogen bromide or hydrogen chloride are very vigorous and may be explosive if uncontrolled. [Pg.437]

It was noted in Section V,B that the chlorophenyl carbene complex 85 can be prepared by chlorine addition to carbyne complex 80. Treatment of 85 with one equivalent of PhLi does not afford 80, suggesting that the reaction sequence is reduction/substitution rather than substitution/reduc-tion. The recent report (127) of a nucleophilic displacement reaction of the molybdenum chlorocarbyne complex 87 with PhLi to generate phenylcar-byne complex 88 suggests that the intermediacy of the chlorocarbyne complex 86 in the above mechanism is not unreasonable. [Pg.183]


See other pages where Chlorine addition reaction is mentioned: [Pg.576]    [Pg.576]    [Pg.72]    [Pg.177]    [Pg.507]    [Pg.538]    [Pg.651]    [Pg.881]    [Pg.361]    [Pg.503]    [Pg.86]    [Pg.999]    [Pg.338]    [Pg.339]    [Pg.1304]    [Pg.986]    [Pg.209]    [Pg.80]    [Pg.51]    [Pg.49]    [Pg.239]    [Pg.240]    [Pg.34]    [Pg.203]    [Pg.653]    [Pg.126]    [Pg.167]    [Pg.192]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Chlorination reactions

Chlorine addition

Chlorine addition reactions with

Chlorine monofluoride, addition reaction

Chlorine reactions

Chlorins reactions

© 2024 chempedia.info