Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality, also compounds

Although unsynunetrically substituted amines are chiral, the configuration is not stable because of rapid inversion at nitrogen. The activation energy for pyramidal inversion at phosphorus is much higher than at nitrogen, and many optically active phosphines have been prepared. The barrier to inversion is usually in the range of 30-3S kcal/mol so that enantiomerically pure phosphines are stable at room temperature but racemize by inversion at elevated tempeiatuies. Asymmetrically substituted tetracoordinate phosphorus compounds such as phosphonium salts and phosphine oxides are also chiral. Scheme 2.1 includes some examples of chiral phosphorus compounds. [Pg.79]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

Many racemic mixtures can be separated by ordinary reverse phase columns by adding a suitable chiral reagent to the mobile phase. If the material is adsorbed strongly on the stationary phase then selectivity will reside in the stationary phase, if the reagent is predominantly in the mobile phase then the chiral selectivity will remain in the mobile phase. Examples of some suitable additives are camphor sulphonic acid (10) and quinine (11). Chiral selectivity can also be achieved by bonding chirally selective compounds to silica in much the same way as a reverse phase. A example of this type of chiral stationary phase is afforded by the cyclodextrins. [Pg.38]

An enantioselective Michael addition reaction was also accomplished in an inclusion complex with a chiral host compound. Treatment of a 1 1 complex of 10c and 66b with 2-mercaptopyridine (137) in the solid state gave (+)-138 of 80% ee in 51% yield. By a similar method, 3-methyl-3-buten-2-one (139) gave (+)-140 of 49% ee in 76% yield [30]. [Pg.30]

The hetero-Diels-Alder reaction has also utilized dienophiles in which both reactive centers are heteroatoms. Kibayashi reported that the intramolecular hetero-Diels-Alder cycloaddition of chiral acylnitroso compounds, generated in situ from periodate oxidation of the precursor hydroxamic acid, showed a marked enhancement of the trans-selectivity in an aqueous medium compared with the selectivity in nonaqueous conditions (Eq. 12.55).125 The reaction was readily applied to the total synthesis of (—)-pumiliotoxin C (Figure 12.5).126... [Pg.405]

A chiral center in a molecule is carbon atom with four different atoms or groups of atoms attached to it. If a molecule has a chiral center, it is very likely to be non-superimposable on its mirror image. Compounds (a) and (d) have no chiral center. Compounds (b) and (c) each have one asymmetric carbon atom, also called a chiral center. [Pg.405]

Chiral oxazolidine compounds have also been used as chiral auxiliaries for asymmetric Diels-Alder reactions. Adam et al.8 demonstrated the cycloaddition of optically active 2,3-dimethyl oxazolidine derivatives with singlet oxygen. As shown in Scheme 5-9, the reaction of chiral substrate 39 with singlet oxygen provides product 40 in high diastereomeric ratio. [Pg.273]

Besides the above-mentioned catalytic asymmetric hydrogenation method for preparing fluorine-containing compounds, other reactions such as asymmetric reduction of achiral fluorine-containing ketones are also feasible methods for preparing chiral fluorinated compounds. For example, the oxazabor-olidine system, which has been discussed in Chapter 6, can also be employed in the catalytic reduction of trifluoromethyl ketones. Scheme 8 40 depicts some examples.85... [Pg.482]

CE has been applied extensively for the separation of chiral compounds in chemical and pharmaceutical analysis.First chiral separations were reported by Gozel et al. who separated the enantiomers of some dansylated amino acids by using diastereomeric complex formation with Cu " -aspartame. Later, Tran et al. demonstrated that such a separation was also possible by derivatization of amino acids with L-Marfey s reagent. Nishi et al. were able to separate some chiral pharmaceutical compounds by using bile salts as chiral selectors and as micellar surfactants. However, it was not until Fanali first showed the utilization of cyclodextrins as chiral selectors that a boom in the number of applications was noted. Cyclodextrins are added to the buffer electrolyte and a chiral recognition may... [Pg.37]

Neolignans are also compounds composed of two phenylpropanoid units, but linked in a manner other than C8-C8 (Fig. 12.1) [10]. The compounds of this class are often chiral and naturally occurring neolignans are usually optically active, which evokes the involvement of DPs in the biosynthesis of neolignans. [Pg.180]

In the present work, some promising results obtained with this kind of asymmetric heterogeneous catalyst, based on silica-supported Ni, Rh and Pt, chemically modified with chiral organotin compounds, are presented. The systems were tested in the enantioselective hydrogenation of ethyl pymvate, acetophenone and 3,4-dimethoxyacetophenone. The stabiUty of these catalysts was also studied to check if they could be reused. [Pg.278]

The determination of enantiomeric purity (ee) by NMR spectroscopy is usually carried out with the help of a nonracemic chiral auxiliary compound. NMR methods not requiring a chiral auxiliary compound are also known and are based on self-association of the enantiomers or on their reaction with a bifunctional achiral compound (see Section 3.1.4.7.). [Pg.157]

A number of different equilibria may be present in the solution of a chiral substrate and the added chiral auxiliary compound. When all equilibrium processes are fast on the NMR timescale at ambient temperature, an averaged spectrum of shifts is observed. This is also the reason why peak coalescence of the anisochronous nuclei is observed when a racemic auxiliary compound is used5,81. The observed anisochrony of the enantiomers AR sS is highest when the chiral auxiliary compound is enantiomerically pure. AR sS decreases as the enantiomeric purity of the chiral auxiliary compound is reduced. AR sS changes its sign when the chirality of the chiral auxiliary compound is inverted (peak reversal). [Pg.158]

Asymmetric bond disconnection is less frequently employed than asymmetric bond formation for the synthesis of chiral, nonracemic compounds. The substrates for these transformations contain either enantiotopic (diastereotopic) hydrogen atoms or enantiotopic (diastereotopic) functional groups. In some cases the classification of a given transformation of such a substrate as asymmetric bond disconnection or bond formation is somewhat arbitrary. Thus, enantiotopic and diastereotopic group differentiation is also described at appropriate places in various sections but more specifically in part B of this volume. [Pg.589]

From other approaches to optically active [2.2]metacyclophanes the following are noteworthy as just mentioned for 64 (medium pressure) liquid chromatography on microcrystalline triacetylcellulose (cf. Ref. 82 ) in ethanol or ether (practicable also at lower temperatures) is a very efficient and successful method for the optical resolution of many axial and planar chiral (aromatic) compounds 83). In many cases baseline-separations can be achieved and thereby both enantiomers obtained with known enantiomeric purity and in amounts sufficient for further investigations, especially for studying their chiroptical properties (see also 3.2 and 3.3). The disub-stituted [2.2]metacyclophanes 57 and 59 (which had been previously correlated to many other derivatives) 78- 79) were first resolved by this method83). [Pg.42]

Some diastereoselectivity was also observed in the reaction of (S)-prolinol with the dichloride (257) leading to the chiral organophosphorus compounds (258). [Pg.233]


See other pages where Chirality, also compounds is mentioned: [Pg.20]    [Pg.186]    [Pg.187]    [Pg.83]    [Pg.56]    [Pg.89]    [Pg.294]    [Pg.56]    [Pg.89]    [Pg.368]    [Pg.396]    [Pg.97]    [Pg.278]    [Pg.416]    [Pg.174]    [Pg.589]    [Pg.246]    [Pg.9]    [Pg.617]    [Pg.184]    [Pg.177]    [Pg.435]    [Pg.190]    [Pg.386]    [Pg.165]    [Pg.279]    [Pg.56]    [Pg.999]    [Pg.2]    [Pg.148]    [Pg.158]    [Pg.288]    [Pg.395]    [Pg.454]   


SEARCH



Chiral compounds

Chirality, also

© 2024 chempedia.info