Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption electronic theory

The Chemisorption of Benzene R. B. Moves and P. B. Wells The Electronic Theory of Photocatalytic Reactions on Semiconductors Th. Wolkenstein Cycloamyloses as Catalysts David W. Griffiths and Myron L. Bender... [Pg.427]

In Chapter 1 we consider the physical and diemical basis of the method of semiconductor chemical sensors. The items dealing with mechanisms of interaction of gaseous phase with the surface of solids are considered in substantial detail. We also consider in this part the various forms of adsorption and adsorption kinetics processes as well as adsorption equilibria existing in real gas-semiconductor oxide adsorbent systems. We analyze the role of electron theory of chemisorption on... [Pg.1]

The role of electronic theory of chemisorption in developing ideas on effects of adsorption on electrical and physical properties of semiconductor adsorbents. [Pg.10]

The principal idea of Volkenshtein, the founder of electronic theory of chemisorption, was that chemisorbed particle and solid body form a unified quantum mechanical system. During the analysis of such systems one should account for the change in electronic state of both adparticle and the adsorbent itself [9]. In other words, in this case adsorption provides for a chemical binding of molecules with adsorbent. [Pg.10]

In conclusion we would like to mention that basic ideas which formed a ground-stone of the Volkenshtein electron theory of chemisorption have been confirmed and substantially developed in numerous... [Pg.12]

It has been proven by experiment that there are donor acceptor atoms and molecules of absorbate and their classification as belonging to one or another type is controlled not only by their chemical nature but by the nature of adsorbent as well (see, for instance [18, 21, 203-205]). From the standpoint of the electron theory of chemisorption it became possible to explain the effect of electron adsorption [206] as well as phenomenon of luminescence of radical recombination during chemisorption [207]. The experimental proof was given to the capability of changing of one form of chemisorption into another during change in the value of the Fermi level in adsorbent [208]. [Pg.92]

The photoadsorption effect as such does not constitute the subject matter of the present article. We shall consider it very briefly, only to the extent necessary to allow one to draw analogies between the mechanisms of the photoadsorptive and photocatalytic effects. The photoadsorptive effect has been studied sufficiently well. A brief summary of the experimental data will be given below. The mechanism of the phenomenon has been thoroughly discussed in a number of theoretical works from the standpoint of the electronic theory of chemisorption and catalysis C3,4,6-8). [Pg.170]

We shall consider the hydrogen-deuterium exchange reaction from the viewpoint of the electronic theory of chemisorption and catalysis (27),... [Pg.179]

Secondly, the electron theory seeks to elucidate the relation between the catalytic and electronic properties of a semiconductor. At the present time we possess a vast amount of experimental material which allows us to infer that the electronic processes taking place in a semiconductor and determining its electrical, optical, and magnetic properties also determine its chemisorptive and catalytic properties. It is the aim of the theory to establish the connection between these two groups of properties. [Pg.190]

The results of the electron theory as developed for semiconductors are fully applicable to dielectrics. They cannot, however, be automatically applied to metals. Contrary to the case of semiconductors, the application of the band theory of solids to metals cannot be considered as theoretically well justified as the present time. This is especially true for the transition metals and for chemical processes on metal surfaces. The theory of chemisorption and catalysis on metals (as well as the electron theory of metals in general) must be based essentially on the many-electron approach. However, these problems have not been treated in any detail as yet. [Pg.191]

The concept of different forms of chemisorption which differ in the character of the bond between the adsorbed particle and the adsorbent lattice is the first important result of the electron theory. The possibility of different bonding types in chemisorption is due to the ability of the chemisorbed particles to form bonds to which either free electrons or free holes of the lattice can contribute. In other words, it is due to the ability of the chemisorbed particle to generate a free electron or a free hole and to give them up to the lattice. [Pg.198]

We come to the conclusion that the various forms of chemisorption differ not only in the character and strength of the bond, but also in the reactivity of the chemisorbed particles. This is the second important result of the electron theory. [Pg.201]

We see that once electron equilibrium is established, the relative amounts of the different forms of chemisorption on the surface, and hence the reactivity of the chemisorbed particles, are uniquely determined by the position of the Fermi level. This may be considered as the fourth important result of the electron theory. [Pg.213]

There have been many attempts to relate bulk electronic properties of semiconductor oxides with their catalytic activity. The electronic theory of catalysis of metal oxides developed by Hauffe (1966), Wolkenstein (1960) and others (Krylov, 1970) is base d on the idea that chemisorption of gases like CO and N2O on semiconductor oxides is associated with electron-transfer, which results in a change in the electron transport properties of the solid oxide. For example, during CO oxidation on ZnO a correlation between change in charge-carrier concentration and reaction rate has been found (Cohn Prater, 1966). [Pg.519]

The most essential progress from the point of view of application of this theory in catalysis and chemisorption has actually been achieved by the very first papers (48-50), where the so-called coherent potential approximation (CPA) was developed and applied. By means of this, photoemission data were explained in a quite satisfying way and the catalytic research got full theoretical support for some of the ideas introduced in catalysis earlier on only semiempirical grounds (5) namely, individual components are distinguishable for molecules from the gas phase and the alloy atoms preserve very much of their metallic individuality also in alloys—something that was impossible according to the RBT and the early electronic theory of catalysis. [Pg.155]

Tompkins (1978) concentrates on the fundamental and experimental aspects of the chemisorption of gases on metals. The book covers techniques for the preparation and maintenance of clean metal surfaces, the basic principles of the adsorption process, thermal accommodation and molecular beam scattering, desorption phenomena, adsorption isotherms, heats of chemisorption, thermodynamics of chemisorption, statistical thermodynamics of adsorption, electronic theory of metals, electronic theory of metal surfaces, perturbation of surface electronic properties by chemisorption, low energy electron diffraction (LEED), infra-red spectroscopy of chemisorbed molecules, field emmission microscopy, field ion microscopy, mobility of species, electron impact auger spectroscopy. X-ray and ultra-violet photoelectron spectroscopy, ion neutralization spectroscopy, electron energy loss spectroscopy, appearance potential spectroscopy, electronic properties of adsorbed layers. [Pg.281]

The electron theory of catalysis established the relationship between chemisorptive and catalytic activities of solids and the Fermi level position. The Fermi level of a solid will be shifted in different directions with respect to the conduction band, depending upon the nature of impurities added, i.e., upon their being electron donors or acceptors. [Pg.480]

The electronic transfers between solids and surface states are at the root of the first electronic theories about chemisorption, which were simultaneously developed by Aigrain and Dugas, Weisz, Hauffe and Engetf. [Pg.80]

The diversity of approaches based on HF (section B3.2.3.4) is small at present compared to the diversity found for DFT. For solids, HF appears to yield results inferior to DFT due to the neglect of electron correlation, but being a genuine many-particle theory it offers the possibility for consistent corrections, in contrast to DFT. Finally, the QMC teclmiqiies (section B3.2.3.41 hold promise for genuine many-particle calculations, yet they are still far from able to offer the same quantities for the same range of materials and geometries as the theories mentioned before. With this wide range of methods now introduced, we will look at their application to chemisorption on solid surfaces. [Pg.2221]

Whitten J L and Pakkanen T A 1980 Chemisorption theory for metallic surfaces Electron localization and the description of surface interactions Phys. Rev. B 21 4357-67... [Pg.2236]

If molecules or atoms form a chemical bond with the surface upon adsorption, we call this chemisorption. To describe the chemisorption bond we need to briefly review a simplified form of molecular orbital theory. This is also necessary to appreciate, at least qualitatively, how a catalyst works. As described in Qiapter 1, the essence of catalytic action is often that it assists in breaking strong intramolecular bonds at low temperatures. We aim to explain how this happens in a simplified, qualitative electronic picture. [Pg.218]

We should point out that up to now we have considered only polycrystals characterized by an a priori surface area depleted in principal charge carriers. For instance, chemisorption of acceptor particles which is accompanied by transition-free electrons from conductivity band to adsorption induced SS is described in this case in terms of the theory of depleted layer [31]. This model is applicable fairly well to describe properties of zinc oxide which is oxidized in air and is characterized by the content of surface adjacent layers which is close to the stoichiometric one [30]. [Pg.112]

It should be noted that excitons can annihilate on surface defects as well, in particular on chemisorbed particles participating in the reaction. This involves a change in the charged state of these particles and, as a result, the chemisorption capacity of the surface with respect to these particles and the rate of the reaction in which these particles participate are also changed. This case requires a special investigation since the quantities p and involved in the theory are of a different form (8) than in the case of the electronic mechanism of light absorption to which our attention was restricted in the present article. [Pg.204]

In the Introduction the problem of construction of a theoretical model of the metal surface was briefly discussed. If a model that would permit the theoretical description of the chemisorption complex is to be constructed, one must decide which type of the theoretical description of the metal should be used. Two basic approaches exist in the theory of transition metals (48). The first one is based on the assumption that the d-elec-trons are localized either on atoms or in bonds (which is particularly attractive for the discussion of the surface problems). The other is the itinerant approach, based on the collective model of metals (which was particularly successful in explaining the bulk properties of metals). The choice between these two is not easy. Even in contemporary solid state literature the possibility of d-electron localization is still being discussed (49-51). Examples can be found in the literature that discuss the following problems high cohesion energy of transition metals (52), their crystallographic structure (53), magnetic moments of the constituent atoms in alloys (54), optical and photoemission properties (48, 49), and plasma oscillation losses (55). [Pg.65]

It has also to be remembered that the band model is a theory of the bulk properties of the metal (magnetism, electrical conductivity, specific heat, etc.), whereas chemisorption and catalysis depend upon the formation of bonds between surface metal atoms and the adsorbed species. Hence, modern theories of chemisorption have tended to concentrate on the formation of bonds with localized orbitals on surface metal atoms. Recently, the directional properties of the orbitals emerging at the surface, as discussed by Dowden (102) and Bond (103) on the basis of the Good-enough model, have been used to interpret the chemisorption behavior of different crystal faces (104, 105). A more elaborate theoretical treatment of the chemisorption process by Grimley (106) envisages the formation of a surface compound with localized metal orbitals, and in this case a weak interaction is allowed with the electrons in the metal. [Pg.148]

Gold forms a continuous series of solid solutions with palladium, and there is no evidence for the existence of a miscibility gap. Also, the catalytic properties of the component metals are very different, and for these reasons the Pd-Au alloys have been popular in studies of the electronic factor in catalysis. The well-known paper by Couper and Eley (127) remains the most clearly defined example of a correlation between catalytic activity and the filling of d-band vacancies. The apparent activation energy for the ortho-parahydrogen conversion over Pd-Au wires wras constant on Pd and the Pd-rich alloys, but increased abruptly at 60% Au, at which composition d-band vacancies were considered to be just filled. Subsequently, Eley, with various collaborators, has studied a number of other reactions over the same alloy wires, e.g., formic acid decomposition 128), CO oxidation 129), and N20 decomposition ISO). These results, and the extent to which they support the d-band theory, have been reviewed by Eley (1). We shall confine our attention here to the chemisorption of oxygen and the decomposition of formic acid, winch have been studied on Pd-Au alloy films. [Pg.158]


See other pages where Chemisorption electronic theory is mentioned: [Pg.11]    [Pg.25]    [Pg.89]    [Pg.161]    [Pg.179]    [Pg.207]    [Pg.71]    [Pg.113]    [Pg.19]    [Pg.296]    [Pg.26]    [Pg.167]    [Pg.368]    [Pg.2227]    [Pg.576]    [Pg.219]    [Pg.48]    [Pg.135]    [Pg.138]    [Pg.33]   
See also in sourсe #XX -- [ Pg.159 , Pg.160 ]




SEARCH



Chemisorption theory

© 2024 chempedia.info