Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unstable chemical

The sulfated compounds MM 13902 (3, n = (5) and MM 17880 (4) are also broad-spectmm agents, but not as potent as thienamycia and all lack any significant activity against Pseudomonas (73). Many carbapenems are excellent inhibitors of isolated P-lactamases, particularly the olivanic acid sulfoxide MM 4550 (3, n = 1) (3). The possible mechanism of action of the carbapenems as inhibitors of P-lactamases has been discussed in some detail (74). Other carbapenems such as PS-5 (5) (75), the carpetimycins (76), asparenomycins (77), and pluracidomycins (8) are all highly active as antibiotics or P-lactamase inhibitors. The parent nucleus itself (1, X = CH2) is intrinsically active, but chemically unstable (9). [Pg.8]

Many instant coffee producers in the United States incorporate natural coffee aroma in coffee oil into the powder. These highly volatile and chemically unstable flavor components necessitate inert-gas packing to prevent aroma deterioration and stating from exposure to oxygen. [Pg.389]

Sotolon (4,5-dimethyl-3-hydroxy-2(5H)-furanone) and solerone (4-acetyl- y-butirrolactone) were claimed to be responsible for some aroma characteristic of flor sherries wines. These compounds are present only as traces, and are chemically unstable. A system of two gas chromatographs coupled with a four-port switching valve was used to quantitate these components without previous fractionation. The first chromatograph was equipped with an on-column injector, in order to avoid thermal degradation of sotolon in the heated injector, a DB-5 column and an FID. The second chromatograph was equipped with an on-column injector, a DB-1701 column and an FID. The method allowed quantification of solerone and sotolon at concentrations as low as a few ppb (29). [Pg.229]

See Ref. [34] for a more complete listing of corrosive chemicals, water and air-reactive chemicals, unstable chemicals, combustible chemicals, and oxidizing chemicals. [Pg.499]

CH2(0CH20N02)2, mw 198.11, N 14.14%, OB to C02 —8.08%, liq. Prepn from formaldehyde or trioxymethylene with mixed acid. Impact sensitivity FI is 6% of PA. Power by lead block test is 148% of PA, and the material is described as not very powerful . Chemically unstable and reactive with moisture Refs 1) Beil — not found 2) Blatt, OSRD 2014(1944)... [Pg.123]

Thienamycin (Fig. 5.5E) is a broad-spectrum /3-lactam antibiotic with high /3-lactamase resistance. Unfortunately, it is chemically unstable, although the TV-formimidoyl derivative, imipenem, overcomes this defect. Imipenem (Fig. 5.5E) is stable to most/3-lactamases but it readily hydrolysed by kidney dehydropeptidase and is administered with a dehydropeptidase inhibitor, cilastatin. Meropenem, which has yet to be marketed, is more stable than imipenem to this enzyme and may thus be administered without cilastatin. Its chemical structure is depicted in Fig. 5.5F. [Pg.102]

Surface bonding mortar or cement is mentioned in some building codes as an approved dampproofing treatment, but not as a waterproofing treatment. A number of manufacturers produce cements and mortars impregnated with fibrous glass or other fibers. Some of these may be chemically unstable in the alkaline environment of Portland cement. [Pg.1284]

FIGURE 10 The half-life. It is impossible to predict when a radioisotope or an unstable substance (molecule) will decay or be decomposed. On an average, however, only half of any type of radioisotope or unstable substance (molecule) remains after one half-life (A/2) one-quarter will remain after two half-lives (A/A), one-eighth after three half-lives (A/8), and so on. The half-life is characteristic of every radioisotope and unstable molecule that of radioisotopes is not affected in any way by the physical or chemical conditions to which the radioisotope may be subjected. Not so the half-life of chemically unstable molecules, which is altered by changes in temperature and by other physical and chemical conditions. [Pg.73]

Almost all new metallic surfaces exposed to the environment are sooner or later coated with a layer of corrosion products metal oxides, sulfides, and carbonates, for example, are common corrosion products formed when a metal or alloy interacts with contaminants in the environment. If the layer is continuous and stable, as in uniform corrosion, it may conceal the underlying metal from further exposure and protect it from additional corrosion if it is discontinuous, or chemically unstable, however, the metal surface below the initial layer of corrosion products remains in contact with the environment. Exposed to humidity and pollutants, the corrosion process continues, penetrating deeper into the metallic bulk and eventually resulting in its total destruction. [Pg.216]

Chang et al. synthesized a 2-methyl-l-[methyl-(2-pyridin-2-yl-ethyl)amino]propane-2-thiol, which when treated with dimethylzinc gave the methylzinc complex 159 (Figure 73).224 A somewhat similar ethylzinc complex 160, supported by the boron-free ligand 2-mercaptobenzyl-bis-(2-pyridylmethyl)amine, proved chemically unstable.225... [Pg.378]

It is important that a given solvent should not contain impurities of a more polar nature, e.g. water or acids, alcohol in chloroform, aromatics in saturated hydrocarbons, as resolution may be impaired. Certain solvent-adsorbent combinations can be chemically unstable. For example, acetone is polymerized by basic alumina. [Pg.83]

Another example of scale-up effects relates to the storage of chemically unstable substances. Well-established procedures can be followed on a small scale. In a commercial unit, the storage of such materials must be reviewed from the standpoint of critical mass. The heat removal capacity of the equipment must be substantially larger than the spontaneous exothermic rate of heat release in the bulk material. Temperature gradients must also be considered. [Pg.138]

Carbinolamines are chemically unstable and, in the case of tertiary amines, dissociate to generate the secondary amine and aldehydes as products or eliminate water to generate the iminium ion. The iminium ion, if formed, can reversibly add water to reform the carbinolamine or add other nucleophiles if present. If the nucleophile happens to be within the same molecule and five or six atoms removed from the electrophilic carbon of the iminium ion, cyclization can occur and form a stable 5- or 6-membered ring system. For example, the 4-imidazolidinone is a major metabolite of lidocaine, which is formed in vivo or can be formed upon isolation of the A -deethyl metabolite of lidocaine if a trace of acetaldehyde happens to be present in the solvent used for extraction (116,118) (Fig. 4.52). [Pg.76]

Water-miscible solvents alone can be used when the drug is chemically unstable in the presence of any water. The number of solvents available for this purpose is extremely limited. The classic review of this subject was made in 1963 (Spiegel and Noseworthy), and some 30 years later, no additional solvents are available. This is unlikely to change in the near future due to the extensive effort necessary to determine the safety of a solvent used as a vehicle. When a nonaqueous vehicle is used, one can invariably expect some degree of pain upon injection, and subsequent tissue destruction is possible. This damage may be due to the heat of solution as vehicle mixes with body fluids it may be associated with tissues rejecting the solvent or, it may be an inherent property of the solvent. [Pg.482]

This chapter is devoted to electrochemical processes in which chemical reactions accompany the initial transfer of one electron. This is actually a pretty common situation with organic reactants since the radical or ion-radical species resulting from this initial step is very often chemically unstable. Although less frequent, such reactions also occur with coordination complexes, ligand exchange being a typical example of reactions that may accompany a change in the metal oxidation number. [Pg.78]

The clipping reaction used in [52, 53, 55] to synthesize tetralactam-based squaraine rotaxanes such as 14 and 15 afforded only moderate yields (ca. 28-35%) of the rotaxanes, possibly because of the unavoidable presence of nucleophiles that react with the chemically unstable squaraines during the reaction. The slippage approach [62] minimizes the squaraine dye s contact with nucleophiles during the rotaxane formation process and therefore can be used to efficiently encapsulate a squaraine dye such as 23 in a macrocycle such as 25 [63],... [Pg.178]

C. P. Andrieux, P. Hapiot, J. Pinson, J.-M. Saveant. Determination of Formal Potentials of Chemically Unstable Redox Couples by Second-Harmonic Alternating Current Voltammetry and Cyclic Voltammetry. Application to the Oxidation of Thiophenoxide Ions. J.Am. Chem. Soc. 1993,115, 7783-7788. [Pg.265]

Typical regions for application of contactors of different types are given in Table 13.2. The choice of a contactor for a particular application requires the consideration of several factors including chemical stability, the value of the products and the rate of phase separation. Occasionally, the extraction system may be chemically unstable and the contact time must then be kept to a minimum by using equipment such as a centrifugal contactor. [Pg.743]

Stationary phase materials are synthesized from different raw materials. Those stationary phase materials synthesized from inorganic materials, such as silica and alumina, are physically strong but chemically unstable. Conversely, stationary phase materials synthesized from organic materials, such as polystyrene or poly(vinyl alcohol), are chemically stable but physically weaker. Improvements in the chemical stability of inorganic stationary phase materials and in the physical strength of organic stationary phase materials are required the marketed products do not have both and have to be used under restricted conditions in liquid chromatography. [Pg.31]

Spherical porous silica gel is the easiest stationary phase material to handle however, although it is physically strong it is chemically unstable. Surface modification can expand its capability for different modes of chromatography, such as normal-phase, reversed-phase, size-exclusion, and ion-exchange liquid chromatography. These stable modifications are performed by chemical deriva-tization of the surface silanol groups. [Pg.35]

In the pure state, a potential electrolyte such as oxalic acid (HOOCCOOH) consists of uncharged molecules. A true electrolyte such as NaCl in the pure state consists of two separate ions, Na and CP. The proton is a bare nucleus it has no electrons. It is chemically unstable as an isolated entity because of its affinity for electrons. As a result, the proton reacts with the free electron pair of oxygen in the H2O molecule. [Pg.14]

The reactivity of phenols to electrophilic nitration is illustrated further by the facile conversion of m-nitrophenol to 2,3,4,6-tetranitrophenol with anhydrous mixed acid. The latter is a powerful explosive, but chemically unstable, like all polynitroarylenes containing a nitro group positioned olp- to other nitro groups. [Pg.132]

Nitration of m-nitroaniline (28) with fuming nitric acid and oleum yields 2,3,4,6-tetranitroaniline (29), a powerful but chemically unstable explosive. 2,3,4,6-Tetranitroaniline readily reacts with a range of nucleophiles, including water to yield 3-amino-2,4,6-trinitrophenol. [Pg.134]


See other pages where Unstable chemical is mentioned: [Pg.77]    [Pg.451]    [Pg.26]    [Pg.149]    [Pg.57]    [Pg.208]    [Pg.238]    [Pg.277]    [Pg.109]    [Pg.385]    [Pg.121]    [Pg.169]    [Pg.593]    [Pg.144]    [Pg.200]    [Pg.337]    [Pg.512]    [Pg.27]    [Pg.106]    [Pg.101]    [Pg.54]    [Pg.743]    [Pg.743]    [Pg.4]    [Pg.127]    [Pg.167]    [Pg.167]   
See also in sourсe #XX -- [ Pg.228 , Pg.235 , Pg.236 , Pg.247 ]

See also in sourсe #XX -- [ Pg.171 ]

See also in sourсe #XX -- [ Pg.171 ]

See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Chemical changes unstable product formation

Chemical converting unstable into stable compound

Chemical substances unstable

Chemically Unstable Materials Decomposition and Polymerization

REACTIVE AND UNSTABLE LABORATORY CHEMICALS

Self-heating, Chemical Kinetics, and Spontaneously Unstable Systems

Unstability

Unstable

Unstable chemicals chlorine

Unstable chemicals exposure

Unstable chemicals health effects

Unstable chemicals toxicity

© 2024 chempedia.info