Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical separation extraction

When the analytical method s selectivity is insufficient, it may be necessary to separate the analyte from potential interferents. Such separations can take advantage of physical properties, such as size, mass or density, or chemical properties. Important examples of chemical separations include masking, distillation, and extractions. [Pg.224]

Chemical Separation. A reprocessing facility typically utilizes multiple extraction/reextraction (stripping) cycles for the recovery and purification of uranium and plutonium. For example, a co-decontamination and partitioning cycle is followed by one or more cycles of uranium and plutonium purification. The basic process is illustrated in Figure 3. [Pg.204]

Chemistry. Chemical separation is achieved by countercurrent Hquid— Hquid extraction and involves the mass transfer of solutes between an aqueous phase and an immiscible organic phase. In the PUREX process, the organic phase is typically a mixture of 30% by volume tri- -butyl phosphate (solvent) and a normal paraffin hydrocarbon (diluent). The latter is typically dodecane or a high grade kerosene (20). A number of other solvent or diluent systems have been investigated, but none has proved to be a substantial improvement (21). [Pg.204]

Eor products having relatively low specific activity, such as some compounds labeled with and which are synthesized on the scale of several millimoles, classical organic chemical separation methods may be utilized, including extraction, precipitation, and crystallization. Eor separation of complex mixtures and for products having high specific activity, such as those labeled with tritium, etc, chromatographic methods utilizing paper, thin... [Pg.438]

Further techniques which may be applied directly to the solvent extract are flame spectrophotometry and atomic absorption spectrophotometry (AAS).13 The direct use of the solvent extract in AAS may be advantageous since the presence of the organic solvent generally enhances the sensitivity of the method. However, the two main reasons for including a chemical separation in the preparation of a sample for AAS are ... [Pg.174]

The facilities at Savannah River(j)) consist of five heavy-water-moderated and cooled production reactors, two chemical separations areas as a heavy water extraction plant, several test reactors, reactor fuel and target processing facilities, the Savannah River Laboratory, and many other facilities necessary to support the operations. During the 1960 s, two of the... [Pg.351]

Wahl and Deck were able to obtain an estimate of an assumed second-order rate coefficient ( 10 l.mole" .sec at 4°C) using a separation procedure based on the extraction of Fe(CN)e by a chloroform solution of Ph AsCl, in the presence of the ions Co(CN)g and Ru(CN)6, to reduce the exchange between the iron species in the two liquid phases. A similar estimate was obtained using a precipitation method in the presence of the carrier Ru(CN)6. A direct injection technique was used as short reaction times were necessary. Wahl has reviewed the large induced exchanges occurring in the chemical separation methods. The extraction procedure when the carriers Co(CN)6 and Ru(CN) are present provides the most satisfactory method of separation. ... [Pg.107]

Chemical separations may first be accomplished by partitioning on the basis of polarity into a series of solvents from non-polar hexane to very polar compounds like methanol. Compounds may also be separated by molecular size, charge, or adsorptive characteristics, etc. Various chromatography methods are utilized, including columns, thin layer (TLC) gas-liquid (GLC), and more recently, high pressure liquid (HPLC) systems. HPLC has proven particularly useful for separations of water soluble compounds from relatively crude plant extracts. Previously, the major effort toward compound identification involved chemical tests to detect specific functional groups, whereas characterization is now usually accomplished by using a... [Pg.4]

Several methods have been used to separate the lanthanides chemically solvent extraction, ion exchange chromatography, HPLC using Q-hydroxyisobutyric acid and, in limited cases, selective reduction of a particular metal cation.40-43 The use of di(2-ethylhexyl)orthophosphoric acid (HDEHP) for the separation of various rare-earth elements via solvent extraction has also been reported.44 16 This separation method is based on the strong tendency of Ln3+ ions to form complexes with various anions (i.e., Cl- or N03 ) and their wide range of affinities for com-plexation to dialkyl orthophosphoric acid. When the HDEHP is attached to a solid phase resin, the lanthanides can be selected with various concentrations of acid in order of size, with the smallest ion being the most highly retained. [Pg.889]

The plutonium concentration in marine samples is principally due to environmental pollution caused by fallout from nuclear explosions and is generally at very low levels [75]. Environmental samples also contain microtraces of natural a emitters (uranium, thorium, and their decay products) which complicate the plutonium determinations [76]. Methods for the determination of plutonium in marine samples must therefore be very sensitive and selective. The methods reported for the chemical separation of plutonium are based on ion exchange resins [76-80] or liquid-liquid extraction with tertiary amines [81], organophosphorus compounds [82,83], and ketones [84,85]. [Pg.354]

Newer and more complex humus extractions have been developed. These typically involve more steps such as both physical separation on the basis of density and particle size (related to the size of soil inorganic components), and chemical separation based on extractions and washings with hydrofluoric acid (HF), hydrochloric acid (HC1), and sodium hydroxide (NaOH). The products of such separations are then subjected to spectroscopic analysis and interpretation [22,23],... [Pg.263]

Chemical separations are often either a question of equilibrium established in two immiscible phases across the contact between the two phases. In the case of true distillation, the equilibrium is established in the reflux process where the condensed material returning to the pot is in contact with the vapor rising from the pot. It is a gas-liquid interface. In an extraction, the equilibrium is established by motion of the solute molecules across the interface between the immiscible layers. It is a liquid-liquid, interface. If one adds a finely divided solid to a liquid phase and molecules are then distributed in equilibrium between the solid surface and the liquid, it is a liquid-solid interface (Table 1). [Pg.405]

Sample Reagents Environment Chemical suppression or Elimination Masking agents Precipitation Separation Extraction Volatilization Chromatography Alternate analytical technique... [Pg.817]

Chemical separation may be considered (acid treatment, leaching) when the parts to be removed are more reactive than the compound to be isolated and can be dissolved and washed away. A special case may be the electrolytic extraction when, in a solidified sample, there is sufficient electrochemical difference between the various phases an example is the extraction from Al-rich ingots of compounds such as CrAl7 and MnAl6 (Raynor and Wakeman 1947). [Pg.575]

A primary goal of chemical separation processes in the nuclear industry is to recover actinide isotopes contained in mixtures of fission products. To separate the actinide cations, advantage can be taken of their general chemical properties [18]. The different oxidation states of the actinide ions lead to ions of charges from +1 (e.g., NpOj) to +4 (e.g., Pu" " ) (see Fig. 12.1), which allows the design of processes based on oxidation reduction reactions. In the Purex process, for example, uranium is separated from plutonium by reducing extractable Pu(IV) to nonextractable Pu(III). Under these conditions, U(VI) (as U02 ) and also U(IV) (as if present, remain in the... [Pg.511]

Musikas, C. Vitart, X. Pasquiou, J. Y. Hoel, P. Chemical Separations King C. J. Navratil, J. D. Eds. Litarvan Literature Denver, 1986 Vol. 2, p. 359. Musikas, C. Vitorge, P. Pattee, D. Proceedings International Solvent Extraction Conference ISEC 83 American Institute of Chemical Engineers Denver, 1983 p. 6. [Pg.558]

Chemical separation techniques can be used to reduce spectral interferences and concentrate the analyte. These techniques include solvent extraction(39) and hydride generation(39, 46, 47). At Imperial College, the hydride generation technique is being used on a daily basis(46) for the analysis of soils, sediments, waters, herbage, and animal tissue. The solvent extraction technique is ideally suited for automated systems where the increased manipulation is carried out automatically, and a labor intensive step and sources of contamination are avoided. [Pg.124]

Protactinium is separated by solvent extraction and anion exchange processes by using sulfate solutions. After chemical separation, the protactinium salts are ignited to a pentoxide, Pa205, which may be converted into an arsenazo(III) complex. The absorbance of the solution is measured at 630 nm with a spectrophotometer. Protactinium-231 is an alpha emitter and also forms photons at 300 KeV, which can be measured by various radioactive counters and spectrophotometric techniques. Protactinium also can be measured by neutron activation analysis. [Pg.784]


See other pages where Chemical separation extraction is mentioned: [Pg.239]    [Pg.239]    [Pg.348]    [Pg.78]    [Pg.733]    [Pg.55]    [Pg.25]    [Pg.28]    [Pg.31]    [Pg.500]    [Pg.417]    [Pg.84]    [Pg.732]    [Pg.83]    [Pg.138]    [Pg.234]    [Pg.474]    [Pg.1651]    [Pg.405]    [Pg.102]    [Pg.78]    [Pg.414]    [Pg.437]    [Pg.92]    [Pg.226]    [Pg.16]    [Pg.30]    [Pg.204]    [Pg.541]    [Pg.556]    [Pg.135]    [Pg.166]    [Pg.845]   
See also in sourсe #XX -- [ Pg.276 , Pg.277 , Pg.283 ]




SEARCH



Extractants separation

Extraction , separations

Extractive separations

Separators, chemical

© 2024 chempedia.info