Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical resistance also plasticizer

FEP Copolymer of tetrafluoroethylenene and hexafluorpropen, which is a plastic-like material used in protective elothing because of its excellent chemical resistance. Also called Teflon-FEP . [Pg.237]

An extensive new Section 10 is devoted to polymers, rubbers, fats, oils, and waxes. A discussion of polymers and rubbers is followed by the formulas and key properties of plastic materials. Eor each member and type of the plastic families there is a tabulation of their physical, electrical, mechanical, and thermal properties and characteristics. A similar treatment is accorded the various types of rubber materials. Chemical resistance and gas permeability constants are also given for rubbers and plastics. The section concludes with various constants of fats, oils, and waxes. [Pg.1287]

Bisphenol A. One mole of acetone condenses with two moles of phenol to form bisphenol A [80-05-07] which is used mainly in the production of polycarbonate and epoxy resins. Polycarbonates (qv) are high strength plastics used widely in automotive appHcations and appHances, multilayer containers, and housing appHcations. Epoxy resins (qv) are used in fiber-reinforced larninates, for encapsulating electronic components, and in advanced composites for aircraft—aerospace and automotive appHcations. Bisphenol A is also used for the production of corrosion- and chemical-resistant polyester resins, polysulfone resins, polyetherimide resins, and polyarylate resins. [Pg.99]

Tetraethylene glycol may be used direcdy as a plasticizer or modified by esterification with fatty acids to produce plasticizers (qv). Tetraethylene glycol is used directly to plasticize separation membranes, such as siHcone mbber, poly(vinyl acetate), and ceUulose triacetate. Ceramic materials utilize tetraethylene glycol as plasticizing agents in resistant refractory plastics and molded ceramics. It is also employed to improve the physical properties of cyanoacrylate and polyacrylonitrile adhesives, and is chemically modified to form polyisocyanate, polymethacrylate, and to contain siHcone compounds used for adhesives. [Pg.363]

CPA. Copolymer alloy membranes (CPAs) are made by alloying high molecular weight polymeries, plasticizers, special stabilizers, biocides, and antioxidants with poly(vinyl chloride) (PVC). The membrane is typically reinforced with polyester and comes in finished thicknesses of 0.75—1.5 mm and widths of 1.5—1.8 m. The primary installation method is mechanically fastened, but some fully adhered systems are also possible. The CPA membranes can exhibit long-term flexibiHty by alleviating migration of the polymeric plasticizers, and are chemically resistant and compatible with many oils and greases, animal fats, asphalt, and coal-tar pitch. The physical characteristics of a CPA membrane have been described (15). [Pg.213]

The most chemical-resistant plastic commercially available today is tetrafluoroethylene or TFE (Teflon). This thermoplastic is practically unaffected by all alkahes and acids except fluorine and chlorine gas at elevated temperatures and molten metals. It retains its properties up to 260°C (500°F). Chlorotrifluoroethylene or CTFE (Kel-F, Plaskon) also possesses excellent corrosion resistance to almost all acids and alkalies up to 180°C (350°F). A Teflon derivative has been developed from the copolymerization of tetrafluoroethylene and hexafluoropropylene. This resin, FEP, has similar properties to TFE except that it is not recommended for continuous exposures at temperatures above 200°C (400°F). Also, FEP can be extruded on conventional extrusion equipment, while TFE parts must be made by comphcated powder-metallurgy techniques. Another version is poly-vinylidene fluoride, or PVF2 (Kynar), which has excellent resistance to alkahes and acids to 150°C (300°F). It can be extruded. A more recent development is a copolymer of CTFE and ethylene (Halar). This material has excellent resistance to strong inorganic acids, bases, and salts up to 150°C. It also can be extruded. [Pg.2457]

As regards the general behaviour of polymers, it is widely recognised that crystalline plastics offer better environmental resistance than amorphous plastics. This is as a direct result of the different structural morphology of these two classes of material (see Appendix A). Therefore engineering plastics which are also crystalline e.g. Nylon 66 are at an immediate advantage because they can offer an attractive combination of load-bearing capability and an inherent chemical resistance. In this respect the arrival of crystalline plastics such as PEEK and polyphenylene sulfide (PPS) has set new standards in environmental resistance, albeit at a price. At room temperature there is no known solvent for PPS, and PEEK is only attacked by 98% sulphuric acid. [Pg.27]

One of the most common impurities in coastal areas which acts in a chemical manner rather than a physical one is salt water. However, with the ever-increasing spread of the chemical industries, and the stepped-up use of gasoline powered vehicles, the problem of chemical degradation are also of interest particularly in inland areas. While plastics in general are corrosion resistant, the multiplicity of chemical agents which can be in the air in industrial atmospheres, plus the chemical nature of the various plastics indicates that it cannot be assumed that all plastics are chemically resistant to all atmospheres. [Pg.107]

Phenolic phenol formaldehydes (PFs) are the low-cost workhorse of the electrical industry (particularly in the past) low creep, excellent dimensional stability, good chemical resistance, good weatherability. Molded black or brown opaque handles for cookware are familiar applications. Also used as a caramel colored impregnating plastics for wood or cloth laminates, and (with reinforcement) for brake linings and many under-the-hood automotive electricals. There are different grades of phenolics that range from very low cost (with low performances) to high cost (with superior performances). The first of the thermosets to be injection-molded (1909). [Pg.430]

Chlorinated polyether is formulated particularly for products requiring, good chemical resistance. Other materials exhibiting good chemical resistance include all of the fluorocarbon plastics, ethylpentenes, polyolefins, certain phenolics, and diallyl phtha-late compounds. Additives such as fillers, plasticizers, stabilizers, colorants, and type catalysts can decrease the chemical resistance of unfilled plastics. Certain chemicals in cosmetics will affect plastics, and tests are necessary in most cases with new formulations. Temperature condition is also very important to include in the evaluation. Careful tests must be made under actual use conditions in final selection studies. [Pg.433]

Polyvinyl chloride is also widely used. Rigid polyvinyl chloride is introduced to the mold in powder form. The material is chosen for durable constructions because of its chemical resistance and ease of processing. It incorporates functional additives and demolds easily. Plasticized polyvinyl chloride can be used to produce flexible parts such as balls and soft toy parts. The polyvinyl chloride is introduced to the mold as either a plastisol or powder. A plastisol is a suspension of granules in a plasticizing agent. When heated, the polymer granules absorb the plasticizer and fuse to form a cohesive, flexible material. [Pg.266]

Optical fibres composed of plastics are also transparent in the visible spectral region but optical losses reach 102 - 103 dB/km13. Their refractive index varies from 1.35 to 1.6 depending on the kind of polymer used (e.g. polymethymethacrylate PMMA -1.49). The chemical resistance is much worse than that of silica fibres and thermal stability is incomparable. On the other hand, low temperature processes of plastic fibre preparation allow us mix the starting polymer with organic dyes which enables the production of luminescent fibres suitable e.g. for fluorescence-based sensing13. [Pg.65]

PP is the lowest density plastic. It has fair-to-good impact strength and excellent colorability. It s translucent in thick sections, and it also has good chemical resistance. The properties can vary widely with different degrees of crystallinity. PP has good resistance to heat and low water absorption. That makes it a suitable material for many medical instruments that need. sterilization by steaming. [Pg.356]

At a concentration of 5 to 25 wt %, increased the effective kill-life of the lindane spray up to 10 times. May have been used in chlordane and BHC insecticide formulations. In polyurethane resin adhesive adhesive containing 16 wt % PCB-1254. Also in formulations plasticized with 3 parts dioctyl phthalate and 1 part PCB-1254 to increase chemical resistance of various polyvinyl chloride (Monsanto, 1960.)... [Pg.909]

Beryllium oxide shows excellent thermal conductivity, resistance to thermal shock, and high electrical resistance. Also, it is unreactive to most chemicals. Because of these properties the compound has several applications. It is used to make refractory crucible materials and precision resistor cores as a reflector in nuclear power reactors in microwave energy windows and as an additive to glass, ceramics and plastics. [Pg.105]

Liner types available are suitable for a wide variety of chemical services, including acids, alkalies, and various solvents. All liners are permeable to some degree, and manufacturers use various methods to vent gas out of the interspace between the liner and casing. All plastics are subject to environmental stress cracking (ESC). ESC can occur even when the liner is chemically resistant to the service. Lined pipe manufacturers should always be consulted regarding liner selections and service apph-cations. Also consult manufacturers regarding vacuum service limits. [Pg.105]

One of the most desirable aspects of plastics and composites is the ability to make net-shaped parts. The same process that creates the material also creates the structure. The penalty for this advantage is that the process of curing a thermosetting plastic or composite part is irreversible. Any part that is not properly processed represents a loss of part, material and the money and time required to make that part, although larger parts are usually repaired if possible. Proper shape becomes a controlled property in addition to the bulk material properties, such as mechanical (stiffness or strength), physical (density, void content, etc.), chemical (degree of cure or carbonization, chemical resistance), electrical (resistivity, conductivity), or any combination of these. [Pg.458]

Chrome yellow pigments stabilized with a large amount of silicate play a major role in the production of colored plastics (e.g., PVC, polyethylene, or polyesters) with high temperature resistance. Incorporation into plastics also improves their chemical resistance to alkali, acid, sulfur dioxide, and hydrogen sulfide. [Pg.119]


See other pages where Chemical resistance also plasticizer is mentioned: [Pg.72]    [Pg.272]    [Pg.510]    [Pg.5]    [Pg.320]    [Pg.156]    [Pg.2458]    [Pg.1]    [Pg.13]    [Pg.164]    [Pg.337]    [Pg.871]    [Pg.13]    [Pg.229]    [Pg.252]    [Pg.409]    [Pg.428]    [Pg.595]    [Pg.37]    [Pg.18]    [Pg.393]    [Pg.147]    [Pg.302]    [Pg.5]    [Pg.516]    [Pg.23]    [Pg.94]    [Pg.119]    [Pg.109]    [Pg.5]   
See also in sourсe #XX -- [ Pg.113 ]

See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Chemical plasticization

Chemical resistance

Chemical resistance (also

Plastic resistance

Plastics chemical resistance

Plastics. Also

© 2024 chempedia.info