Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Typical model reaction

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

Aerobic and peroxidative oxidations of alcohols, in particular of benzylic alcohols, are typical model reactions due to their importance and generality inexpensive O2, H2O2 or tejt-butyl hydroperoxide (TBHP) oxidants, and simple procedures are usually involved. In this section, an overview of some interesting catalytic systems, which were lately introduced into the field of alcohol oxidation, is presented. This concerns mainly homogeneous systems, since recent advances on heterogeneous catalysts are included in Section 8. Moreover, a glance at new substrates and oxidants which could successfully be used in a near future and make a difference in terms of efficiency, selectivity, economy and/or sustainability of the processes, is also presented. [Pg.94]

Thiophene is the typical model compound, which has been extensively studied for typifying gasoline HDS. Although, some results are not completely understood, a reaction network has been proposed by Van Parijs and Froment, to explain their own results, which were obtained in a comprehensive set of conditions. In this network, thiophene is hydrodesulfurized to give a mixture of -butenes, followed by further hydrogenation to butane. On the considered reaction conditions, tetrahydrothiophene and butadiene were not observed [43], The consistency between the functional forms of the rate equations for the HDS of benzothiophene and thiophene, based on the dissociative adsorption of hydrogen, were identical [43,44], suggesting equivalent mechanisms. [Pg.25]

We were interested in the behaviour of polymeric catalysts in order to confirm that typical polymer effects may occur. Oxidative coupling of 2,6-disubstituted phenols, as developped by Hay (7), was chosen as a model reaction and the catalytic activities of coordination complexes of copper with several polymeric tertiary amines were compared with the activities of their low molecular weight analogs. The overall reaction scheme is presented in scheme 1. [Pg.8]

In sharp contrast to the unique pattern for the incorporation of carbon monoxide into the 1,6-diyne 63, aldehyde 77 was obtained as the sole product in the rhodium-catalyzed reaction of 1,6-enyne 76 with a molar equivalent of Me2PhSiH under CO (Scheme 6.15, mode 1) [22]. This result can be explained by the stepwise insertion of the acetylenic and vinylic moieties into the Rh-Si bond, the formyl group being generated by the reductive elimination to afford 77. The fact that a formyl group can be introduced to the ole-finic moiety of 76 under mild conditions should be stressed, since enoxysilanes are isolated in the rhodium-catalyzed silylformylation of simple alkenes under forcing conditions. The 1,6-enyne 76 is used as a typical model for Pauson-Khand reactions (Scheme 6.15, mode 2) [23], whereas formation of the corresponding product was completely suppressed in the presence of a hydrosilane. The selective formation of 79 in the absence of CO (Scheme 6.15, mode 3) supports the stepwise insertion of the acetylenic and olefmic moieties in the same molecules into the Rh-Si bond. [Pg.126]

If the slopes of the absorption/time curves differ considerably, a positive hit is indicated (i.e., an enantioselective lipase-variant has been identified) (16). Figure 5 shows two typical experimental plots, illustrating the presence of a non-selective lipase (top) and a hit (bottom) (16). As a consequence of the crudeness of the test, quantitative evaluation is not possible. Therefore, the hits need to be investigated separately in laboratory-scale reactions and evaluated quantitatively by conventional chiral GC. About 800 plots of this kind can easily be recorded per day. A total of 40 000 lipase-variants were generated by epPCR, saturation mutagenesis, cassette mutagenesis, and DNA shuffling and screened in the model reaction. [Pg.12]

Local density models also provide a poor account of homolytic bond dissociation energies. The direction of the errors is the opposite as noted for Hartree-Fock models (reaction energies are too large), but the magnitudes of the errors are comparable. In fact, the average of Hartree-Fock and local density homolytic bond dissociation energies is typically quite close to the experimental energy. ... [Pg.189]

Since the reduction potential of MV2+/MV is low enough (—0.44 V at pH 7) to reduce protons, the presence of platinum as a catalyst in the solution containing MV 7 brings about hydrogen formation. Scheme 1 is a typical model of photo-induced charge separation and electron relay to yield H2. It also represents the half reaction cycles of the reduction site for the photochemical conversion shown in Fig. 3. [Pg.8]

This argument shows that for the first-order reaction model the stationary state always has some sort of stability to perturbations. In fact, this is only a first step and will not reveal Hopf bifurcations or oscillatory solutions, should they occur-. A full stability analysis of typical flow-reaction schemes will appear in the next chapter. [Pg.147]

Figure 1. Testing the Keldish limit [1, 2] to ionization by intense infrared femtosecond/picosecond laser pulses used for control of chemical reactions [3, 4], (a) Electronic ground state embedded in a typical model potential curve with the ionization potential Es = 12.9 eV. (b) Intense ( o = 35.5 GV/m"1, Iq = 3.3 x 1014 W/cm2), ultra-short (tp = 0.5 ps), infrared (l/X = 3784 cm" ) laser pulse, (c) Expectation value for the position of the election, which is driven by the laser held shown in panel (b) [compare with ro = 122 A, Eq. (3)]. (d) Electron energy. These model calculations demonstrate that even very intense (/ > /Keldish) ultrashort 1R laser pulses may not cause ionization that is, the simple estimates (1)—<4) [1, 2] are not applicable. Figure 1. Testing the Keldish limit [1, 2] to ionization by intense infrared femtosecond/picosecond laser pulses used for control of chemical reactions [3, 4], (a) Electronic ground state embedded in a typical model potential curve with the ionization potential Es = 12.9 eV. (b) Intense ( o = 35.5 GV/m"1, Iq = 3.3 x 1014 W/cm2), ultra-short (tp = 0.5 ps), infrared (l/X = 3784 cm" ) laser pulse, (c) Expectation value for the position of the election, which is driven by the laser held shown in panel (b) [compare with ro = 122 A, Eq. (3)]. (d) Electron energy. These model calculations demonstrate that even very intense (/ > /Keldish) ultrashort 1R laser pulses may not cause ionization that is, the simple estimates (1)—<4) [1, 2] are not applicable.
Intramolecular dynamics and chemical reactions have been studied for a long time in terms of classical models. However, many of the early studies were restricted by the complexities resulting from classical chaos, Tlie application of the new dynamical systems theory to classical models of reactions has very recently revealed the existence of general bifurcation scenarios at the origin of chaos. Moreover, it can be shown that the infinite number of classical periodic orbits characteristic of chaos are topological combinations of a finite number of fundamental periodic orbits as determined by a symbolic dynamics. These properties appear to be very general and characteristic of typical classical reaction dynamics. [Pg.493]

As part of a theoretical examination of the factors controlling the catalytic efficiency of a transmethylation enzyme (catechol (9-mcthyltransferase), the reaction mechanism of the non-enzymic transmethylation of catechol by, -adcnosylmethionine (AdoMet, as modelled by sulfonium ion) has been elucidated by using ab initio and semiempirical quantum mechanical methods.97 The gas-phase reaction between catecholate and sulfonium is extremely fast, involving no overall barrier, and the reaction profile to some extent resembles that of a typical gas-phase, S N 2 reaction. However, in aqueous solution, this reaction is very slow, with a predicted barrier of 37.3 kealmol-1. Good agreement between calculated KIEs for the model reaction and measured KIEs for the enzymic reaction suggests that the transition states are similar. [Pg.315]

The malonaldehyde-amine reaction has been extensively studied by Tappel and co-workers (2), by Csallany et al. (3), by Privett and co-workers (4), Knook et al. (5), Buttkus and Bose (6 ), as well as many others. As shown in Figure 1, malonaldehyde may react with a primary amine to produce an initial ene-amine Schiff base ( 7 ), then by further condensation with another amine, an amino-imino-propene compound. Heat and acid are required in the usual model reaction. The model compounds (lysine with malonaldehyde, for example) fluoresce between 430 and 470 nm when excited between 350 and 360 nm (8). These are typical of the "aging" pigments, the organic solvent-soluble lipofuscin in oxidizing tissue. [Pg.48]

FIGURE 10.13 Typical model system for studying metalloenzyme reaction mechanisms. This is a model of the TS for hydrogen atom abstraction from substrate by the Fe(III)OH center of lipoxygenase. [Pg.492]

Note that the monooxygenase model reactions described above are performed in non-aqueous diluters. Therefore, hematin form is absent and only hemin is present, of which, apparently, formation of an intermediate shaped as Hm=0 is typical. Model catalysts of cytochrome P-450 operate in liquids, similar to enzymes themselves. Their activity depends on many factors, including diluter origin, reaction mixture pH and cell effects. As indicated [1], the gas-phase version of the oxidation process is much freer from these effects. [Pg.254]


See other pages where Typical model reaction is mentioned: [Pg.538]    [Pg.57]    [Pg.831]    [Pg.538]    [Pg.57]    [Pg.831]    [Pg.67]    [Pg.423]    [Pg.183]    [Pg.222]    [Pg.74]    [Pg.60]    [Pg.269]    [Pg.88]    [Pg.310]    [Pg.957]    [Pg.53]    [Pg.112]    [Pg.366]    [Pg.332]    [Pg.386]    [Pg.151]    [Pg.380]    [Pg.477]    [Pg.484]    [Pg.129]    [Pg.407]    [Pg.116]    [Pg.13]    [Pg.255]    [Pg.232]    [Pg.278]    [Pg.491]    [Pg.38]    [Pg.176]    [Pg.489]   
See also in sourсe #XX -- [ Pg.124 , Pg.794 , Pg.798 ]




SEARCH



© 2024 chempedia.info