Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reaction equilibrium electrochemical

As seen in previous sections, the standard entropy AS of a chemical reaction can be detemiined from the equilibrium constant K and its temperature derivative, or equivalently from the temperature derivative of the standard emf of a reversible electrochemical cell. As in the previous case, calorimetric measurements on the separate reactants and products, plus the usual extrapolation, will... [Pg.370]

In the previous section we saw how voltammetry can be used to determine the concentration of an analyte. Voltammetry also can be used to obtain additional information, including verifying electrochemical reversibility, determining the number of electrons transferred in a redox reaction, and determining equilibrium constants for coupled chemical reactions. Our discussion of these applications is limited to the use of voltammetric techniques that give limiting currents, although other voltammetric techniques also can be used to obtain the same information. [Pg.527]

Electrochemical cells are familiar—a flashlight operates on current drawn from electrochemical cells called dry cells, and automobiles are started with the aid of a battery, a set of electrochemical cells in tandem. The last time you changed the dry cells in a flashlight because the old ones were dead, did you wonder what had happened inside those cells Why does electric current flow from a new dry cell but not from one that has been used many hours We shall see that this is an important question in chemistry. By studying the chemical reactions that occur in an electrochemical cell we discover a basis for predicting whether equilibrium in a chemical reaction fa-... [Pg.199]

The value of this list is obvious. Any half-reaction can be combined with the reverse of another half-reaction (in the proportion for which electrons gained is equal to electrons lost) to give a possible chemical reaction. Our list permits us to predict whether equilibrium favors reactants or products. We would like to expand our list and to make it more quantitative. Electrochemical cells help us do this. [Pg.206]

Similarly to chemical reactions, it is possible to treat electrochemical reactions in equilibrium with the help of the thermodynamics. [Pg.9]

Measurement of Equilibrium Constants Electrochemical cells can be used to measure equilibrium constants for chemical reactions. For example, consider the cell... [Pg.487]

Electrochemical reactions differ fundamentally from chemical reactions in that the kinetic parameters are not constant (i.e., they are not rate constants ) but depend on the electrode potential. In the typical case this dependence is described by Eq. (6.33). This dependence has an important consequence At given arbitrary values of the concentrations d c, an equilibrium potential Eq exists in the case of electrochemical reactions which is the potential at which substances A and D are in equilibrium with each other. At this point (Eq) the intermediate B is in common equilibrium with substances A and D. For this equilibrium concentration we obtain from Eqs. (13.9) and (13.11),... [Pg.223]

Consider an electrochemical reaction of the type Red Ox + e under conditions when the chemical reaction (and equilibrium)... [Pg.229]

When the current is anodic, component Red is consumed and the equilibrium in the electrolyte close to the surface is disturbed reaction (13.37) will start to proceed from left to right, producing additional amounts of species Red. In this case the chemical precedes the electrochemical reaction. However, when the current is cathodic, substance Red is produced and the chemical reaction (13.37), now as a subsequent reaction, will occur from right to left. When component Ox rather than component Red is involved in the chemical reaction, this reaction will be the preceding reaction for cathodic currents, but otherwise all the results to be reported below remain valid. [Pg.229]

Equilibrium between substances A and Red will be preserved during current flow not only in the bulk solution but even near the electrode surface when the chemical reaction has a high exchange rate. Therefore, a change in surface concentration of the substance Red which occurs as a result of the electrochemical reaction will give... [Pg.229]

Consider the case when the equilibrium concentration of substance Red, and hence its limiting CD due to diffusion from the bulk solution, is low. In this case the reactant species Red can be supplied to the reaction zone only as a result of the chemical step. When the electrochemical step is sufficiently fast and activation polarization is low, the overall behavior of the reaction will be determined precisely by the special features of the chemical step concentration polarization will be observed for the reaction at the electrode, not because of slow diffusion of the substance but because of a slow chemical step. We shall assume that the concentrations of substance A and of the reaction components are high enough so that they will remain practically unchanged when the chemical reaction proceeds. We shall assume, moreover, that reaction (13.37) follows first-order kinetics with respect to Red and A. We shall write Cg for the equilibrium (bulk) concentration of substance Red, and we shall write Cg and c for the surface concentration and the instantaneous concentration (to simplify the equations, we shall not use the subscript red ). [Pg.230]

Having introduced matters pertaining to the electrochemical series earlier, it is only relevant that an appraisal is given on some of its applications. The coverage hereunder describes different examples which include aspects of spontaneity of a galvanic cell reaction, feasibility of different species for reaction, criterion of choice of electrodes to form galvanic cells, sacrificial protection, cementation, concentration and tempera lure effects on emf of electrochemical cells, clues on chemical reaction, caution notes on the use of electrochemical series, and finally determination of equilibrium constants and solubility products. [Pg.650]

The several theoretical and/or simulation methods developed for modelling the solvation phenomena can be applied to the treatment of solvent effects on chemical reactivity. A variety of systems - ranging from small molecules to very large ones, such as biomolecules [236-238], biological membranes [239] and polymers [240] -and problems - mechanism of organic reactions [25, 79, 223, 241-247], chemical reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200, 227], stability [284] - have been treated by these techniques. Some of these... [Pg.339]

We start with the case where the initial electron transfer reaction is fast enough not to interfere kinetically in the electrochemical response.1 Under these conditions, the follow-up reaction is the only possible rate-limiting factor other than diffusion. The electrochemical response is a function of two parameters, the first-order (or pseudo-first-order) equilibrium constant, K, and a dimensionless kinetic parameter, 2, that measures the competition between chemical reaction and diffusion. In cyclic voltammetry,... [Pg.80]

Chemical reaction steps Even if the overall electrochemical reaction involves a molecular species (O2). it must first be converted to some electroactive intermediate form via one or more processes. Although these processes are ultimately driven by depletion or surplus of intermediates relative to equilibrium, the rate at which these processes occur is independent of the current except in the limit of steady state. We therefore label these processes as chemical processes in the sense that they are driven by chemical potential driving forces. In the case of Pt, these steps include dissociative adsorption of O2 onto the gas-exposed Pt surface and surface diffusion of the resulting adsorbates to the Pt/YSZ interface (where formal reduction occurs via electrochemical-kinetic processes occurring at a rate proportional to the current). [Pg.565]

The electrochemical reactor has two magic properties (1) It causes chemical reaction where equilibrium does not permit reaction in the absence of an electric field and (2) it causes a separation of products because they are generated at different electrodes. The electrode surfaces are catalysts to promote certain reactions. In H2O electrolysis... [Pg.313]

This question is easy to answer There is always an equilibrium condition at the base of the discussion of any kinetic process. Nemst s equation is the electrochemical version of the well-known thermodynamic equation, AG = AG°+/KTln 0 /aKacam which forms a basic part of the treatment of equilibrium in chemical reactions and which is deduced and discussed in every thermodynamics text. Indeed, one can deduce Nemst s equation from it For at equilibrium ... [Pg.347]

If the rate at which the reaction in eqn. (178) attains its equilibrium is very high compared with the time scale of the electrochemical experiment, the concentrations of the species involved obey eqn. (178) at any point in the solution and also in the diffusion layer and even inside the electrical double layer. Then, the equilibrium of the chemical reaction is said to be perfectly mobile [147]. [Pg.318]

Activation Processes. To be useful in battery applications reactions in list occur at a reasonable rate The rare or ability of battery electrodes to produce current is determined by the kinetic processes of electrode operations, not by thermodynamics, which describes the characteristics of reactions at equilibrium when the forward and reverse reaction rates are equal. Electrochemical reaction kinetics follow the same general considerations as those of bulk chemical reactions. Two differences are a potential drop that exists between the electrode and the solution because of the electrical double layer at the electrode interface, and the reaction that occurs at a two-dimensional interfaces rather than in three-dimensional space. [Pg.178]

One of the most useful applications of standard potentials is the calculation of equilibrium constants from electrochemical data. The techniques we are going to develop here can be applied to reactions that involve a difference in concentration, the neutralization of an acid by a base, a precipitation, or any chemical reaction, including redox reactions. It may seem puzzling at first that electrochemical data can be used to calculate the equilibrium constants for reactions that are not redox reactions, but we shall see that this is the case. [Pg.723]

Sometimes the oxidized species can exist in two forms in chemical equilibrium, with one of them electro-inactive in the potential range where the electrochemical process occurs. This type of reaction pathway is known as a CE mechanism because a homogeneous chemical reaction (C) precedes the heterogeneous electrochemical process (E). If the chemical step is of first or pseudo-first order, the process can be expressed by the reaction scheme ... [Pg.189]

This different behavior can be explained by considering that for a CE mechanism (the reasoning is similar for an EC one), C species is required by the chemical reaction whose equilibrium is distorted in the reaction layer (whose thickness in the simplified dkss treatment is <5r = jDj(k + 2)) and by the electrochemical reaction, which is limited by the diffusion layer (of thickness 8 = yfnDt). For a catalytic mechanism, C species is also required for both the chemical and the electrochemical reactions, but this last stage gives the same species B, which is demanded by the chemical reaction such that only in the reaction layer do the concentrations of species B and C take values significantly different from those of the bulk of the solution. In summary, the catalytic mechanism can reach a true steady-state current-potential response under planar diffusion because its perturbed zone is restricted to the reaction layer <5r, which is independent of time, whereas the distortion of CE (or EC) mechanism is extended until the diffusion layer 8, which depends on time, and a stationary current-potential response will not be reached under these conditions. [Pg.204]

The voltammetric response for the reaction scheme (3. XI) depends on the difference between the formal potentials of both electrochemical steps, ACt°, and on the equilibrium and kinetic constants of the intermediate chemical reaction. If AE = Ef.2 — Ef j [Pg.217]

A battery (or galvanic or voltaic cell) is a device that uses oxidation and reduction reactions to produce an electric current. In an electrolytic cell, an external source of electric current is used to drive a chemical reaction. This process is called electrolysis. When the electric potential applied to an electrochemical cell is just sufficient to balance the potential produced by reactions in the cell, we have an electrochemical cell at equilibrium. This state also occurs if there is no connections between the terminals of the cell (open-circuit condition). Our discussion in this chapter will be limited to electrochemical cells at equilibrium. [Pg.301]

Gas sensors usually incorporate a conventional ion-selective electrode surrounded by a thin film of an intermediate electrolyte solution and enclosed by a gas-permeable membrane. An internal reference electrode is usually included, so that the sensor represents a complete electrochemical cell. The gas (of interest) in the sample solution diffuses through the membrane and comes to equilibrium with the internal electrolyte solution. In the internal compartment, between the membrane and the ion-selective electrode, the gas undergoes a chemical reaction, consuming or forming an ion to be detected by the ion-selective electrode. (Protonation equilibria in conjunction with a pH electrode are most common.) Since the local activity of this ion is proportional to the amount of gas dissolved in the sample, the electrode response is directly related to the concentration of the gas in the sample. The response is usually linear over a range of typically four orders of magnitude the upper limit is determined by the concentration of the inner electrolyte solution. The permeable membrane is the key to the electrode s gas selectivity. Two types of polymeric material, microporous and homogeneous, are used to form the... [Pg.224]

Apart from the ease of precise control in an electrochemical path to synthesis, there is the unique feature of being able to force the electrode reaction to take place against its own AG. This is because the principal rule of chemical equilibria is AG = 0, but in electrochemical equilibria, the equilibrium condition is AG = -nFEKV Thus, if the cell potential is exactly rev, the chemical reaction in the cell is at equilibrium and nothing happens. However (in contrast to what can be done chemically), moving the potential of the working electrode in a more negative direction than its reversible potential stimulates the reaction to take off in a cathodic direction at a fixed rate i.e., it acts to reduce the reactant ... [Pg.88]

It is in this sense it is said that in an electrochemical energy converter, the ideal maximum efficiency is 100% for, as in the above idealized situation, if one could carry out reactions in such a way that the electrode potentials were infinitely near the equilibrium values, the electrical energy one could draw2 from the reaction would be nFVe and this is all of the free-energy change AG, which is the maximum amount of useful work one can obtain from a chemical reaction. [Pg.283]

The Gibbs energy change is related to some other important physical quantities, such as the equilibrium constant for a chemical reaction and the electromotive force of an electrochemical cell, by the Nemst and van t Hoff equations ... [Pg.55]


See other pages where Chemical reaction equilibrium electrochemical is mentioned: [Pg.42]    [Pg.841]    [Pg.188]    [Pg.21]    [Pg.225]    [Pg.211]    [Pg.238]    [Pg.10]    [Pg.149]    [Pg.308]    [Pg.65]    [Pg.387]    [Pg.397]    [Pg.281]    [Pg.203]    [Pg.646]    [Pg.143]    [Pg.113]    [Pg.235]    [Pg.17]    [Pg.114]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Electrochemical reactions

Electrochemical-chemical

Equilibrium electrochemical

Equilibrium, chemical/reaction

© 2024 chempedia.info