Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical fractionation methods precipitation

According to Coimbra et solvents play a central role in the majority of chemical and pharmaceutical industrial processes. The most used method to obtain artemisinin (1) from A. annua is through the use of organic solvents such as toluene, hexane, cyclohexane, ethanol, chloroform and petroleum ether. Rodrigues et al described a low-cost and industrial scaled procedure that enables artemisinin (1) enhanced yields by using inexpensive and easy steps. Serial extraction techniques allowed a reduction of 65% in solvent consumption. Moreover, the use of ethanol for compound extraction is safer when compared to other solvents. Flash column pre-purification employing silicon dioxide (Zeosil ) as stationary phase provided an enriched artemisinin (1) fraction that precipitated in hexane/ethyl acetate (85/15, v/v) solution. These results indicate the feasibility of producing artemisinin (1) at final cost lowered by almost threefold when compared to classical procedures. [Pg.316]

The asphaltenes are nonvolatile and remain in the residue when the crude is subjected to distillation. The resins are partially volatile and therefore may be present in the lubricating oil fractions of higher boiling point as well as in the residue. Among the many methods employed for the separation of these materials from the oil fractions are distillation, adsorption, chemical treatment, and precipitation by special solvents. [Pg.172]

Table 30-1 lists a variety of separation methods that are in common use, including (1) chemical or electrolytic precipitation, (2) distillation, (3) solvent extraction, (4) ion exchange, (5) chromatography, (6) electrophoresis, and (7) field-flow fractionation. The first four are discussed in Sections 30A through 30E of this chapter. An introduction to chromatography is presented in Section 30F. Chapters 31 and 32 deal with gas and liquid chromatography, respectively, while Chapter 33 deals with electrophoresis, field-flow fractionation, and other separation methods. [Pg.907]

The methods used can be conveniently arranged into a number of categories (a) fractionation by precipitation (b) fractionation by distillation (c) separation by chromatographic techniques (d) chemical analysis by spectrophotometric techniques (infrared, ultraviolet, nuclear magnetic resource. X-ray fluorescence, emission, neutron activation), titrimetric and gravimetric techniques, and elemental analysis and (e) molecular weight analysis by mass spectrometry, vapor pressure osmometry, and size exclusion chromatography. [Pg.336]

Fractionation by precipitation can be brought about by methods which are either chemical or physical in nature. Separations carried out by chemical precipitation are dealt with in the next chapter, and the present Section deals with separations by precipitation carried out by physical methods. [Pg.17]

As shown in the lower pathway in f-igure 32-8. a destructive method requires that the analyte be separated from the other components of the sample prior to counting. If a chemical separation method is used, this technique is called radiochemical neutron activation. In this case a known amount of the irradiated sample is dissolved and the analyte separated by precipitation, extraction, ion exchange, or chromatography. The isolated material or a known fraction thereof is then counted for its gamma — or beta — activity. As in the nondestructive method, standards may be irradiated simultaneously and treated in an identical way. Equation. 32-21 is then used to calculate the results of the analysis. [Pg.922]

Fluorozirconate Crystallization. Repeated dissolution and fractional crystallization of potassium hexafluorozirconate was the method first used to separate hafnium and zirconium (15), potassium fluorohafnate solubility being higher. This process is used in the Prinieprovsky Chemical Plant in Dnieprodzerzhinsk, Ukraine, to produce hafnium-free zirconium. Hafnium-enriched (about 6%) zirconium hydrous oxide is precipitated from the first-stage mother Hquors, and redissolved in acid to feed ion-exchange columns to obtain pure hafnium (10). [Pg.442]

However, for the past 30 years fractional separation has been the basis for most asphalt composition analysis (Fig. 10). The separation methods that have been used divide asphalt into operationally defined fractions. Four types of asphalt separation procedures are now in use ( /) chemical precipitation in which / -pentane separation of asphaltenes is foUowed by chemical precipitation of other fractions with sulfuric acid of increasing concentration (ASTM D2006) (2) solvent fractionation separation of an "asphaltene" fraction by the use of 1-butanol foUowed by dissolution of the 1-butanol solubles in... [Pg.366]

In modern terms, asphaltene is conceptually defined as the normal-pentane-insoluble and benzene-soluble fraction whether it is derived from coal or from petroleum. The generalized concept has been extended to fractions derived from other carbonaceous sources, such as coal and oil shale (8,9). With this extension there has been much effort to define asphaltenes in terms of chemical structure and elemental analysis as well as by the carbonaceous source. It was demonstrated that the elemental compositions of asphaltene fractions precipitated by different solvents from various sources of petroleum vary considerably (see Table I). Figure 1 presents hypothetical structures for asphaltenes derived from oils produced in different regions of the world. Other investigators (10,11) based on a number of analytical methods, such as NMR, GPC, etc., have suggested the hypothetical structure shown in Figure 2. [Pg.446]

The lanthanide group of elements (Table 11.7) is very difficult to separate by traditional methods because of their similar chemical properties. The techniques originally used, like the precious metals, included laborious multiple fractional recrystallizations and fractional precipitation, both of which required many recycle streams to achieve reasonably pure products. Such techniques were unable to cope with the demands for significant quantities of certain pure compounds required by the electronics industry hence, other separation methods were developed. Resin ion exchange was the first of these... [Pg.495]

There are several processes for commercial thorium production from monazite sand. They are mostly modifications of the acid or caustic digestion process. Such processes involve converting monazite to salts of different anions by combination of various chemical treatments, recovery of the thorium salt by solvent extraction, fractional crystallization, or precipitation methods. Finally, metalhc thorium is prepared by chemical reduction or electrolysis. Two such industrial processes are outlined briefly below. [Pg.929]

For resolution of the racemate 12 two different procedures can be applied 124 the en-antioselective enzymatic deacylation of chloroacetyl-DL-a-aminosuberic acid at pH 7.2 with Taka-acylase or the enantioselective salt precipitation of Z-dl-Asu-OH with D-tyrosine hydrazide according to the method of Vogler et alJ25 Complete enzymatic digestion is achieved in about ten days at 37 °C, and the optically pure L-enantiomer is obtained in 80% yield but the overall efficiency is lower than that of the chemical method. Fractional crystallization affords in good yields the Z-l-Asu-OH derivative 13 which is then used directly as a suitably protected intermediate in subsequent derivatization steps (see Scheme 6). Moreover, the recovery of the D-enantiomer from the mother liquors is also easy in this case. [Pg.227]


See other pages where Chemical fractionation methods precipitation is mentioned: [Pg.366]    [Pg.289]    [Pg.27]    [Pg.123]    [Pg.132]    [Pg.250]    [Pg.130]    [Pg.312]    [Pg.28]    [Pg.250]    [Pg.54]    [Pg.2880]    [Pg.225]    [Pg.658]    [Pg.2270]    [Pg.279]    [Pg.37]    [Pg.433]    [Pg.319]    [Pg.461]    [Pg.85]    [Pg.57]    [Pg.533]    [Pg.46]    [Pg.33]    [Pg.212]    [Pg.258]    [Pg.44]    [Pg.289]    [Pg.289]    [Pg.183]    [Pg.37]    [Pg.279]    [Pg.162]    [Pg.168]   
See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Chemical fractionation

Chemical fractionation methods

Chemical fractions

Chemical precipitation

Fractional precipitation

Fractionation methods

Methods fractions

Precipitants methods

Precipitation fractionation

© 2024 chempedia.info