Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hafnium producers

Apart from nuclear applications in control rods, hafuium is produced for specific uses (microelectronic, super alloys). It is a byproduct of zirconium (about 2% in namral ores). Estimates are that the two main hafnium producers, ATI Wah Chang (USA) and CEZUS (AREVA group, France), produce around 40 and 30 tons of the... [Pg.539]

It was originally separated from zirconium by repeated recrystallization of the double ammonium or potassium fluorides by von Hevesey and Jantzen. Metallic hafnium was first prepared by van Arkel and deBoer by passing the vapor of the tetraiodide over a heated tungsten filament. Almost all hafnium metal now produced is made by reducing the tetrachloride with magnesium or with sodium (Kroll Process). [Pg.130]

Fluorozirconate Crystallization. Repeated dissolution and fractional crystallization of potassium hexafluorozirconate was the method first used to separate hafnium and zirconium (15), potassium fluorohafnate solubility being higher. This process is used in the Prinieprovsky Chemical Plant in Dnieprodzerzhinsk, Ukraine, to produce hafnium-free zirconium. Hafnium-enriched (about 6%) zirconium hydrous oxide is precipitated from the first-stage mother Hquors, and redissolved in acid to feed ion-exchange columns to obtain pure hafnium (10). [Pg.442]

Electrolysis. Electro winning of hafnium, zirconium, and titanium has been proposed as an alternative to the KroU process. Electrolysis of an all chloride hafnium salt system is inefficient because of the stabiHty of lower chlorides in these melts. The presence of fluoride salts in the melt increases the StabiHty of in solution and results in much better current efficiencies. Hafnium is produced by this procedure in Erance (17). [Pg.442]

Total hafnium available worldwide from nuclear zirconium production is estimated to be 130 metric tons annually. The annual usage, in all forms, is about 85 t. The balance is held in inventory in stable intermediate form such as oxide by the producers Teledyne Wah. Chang (Albany, Oregon) and Western Zirconium in the United States Ce2us in France Prinieprovsky Chemical Plant in Ukraine and Chepetsky Mechanical Plant in Russia (crystal bar). [Pg.443]

After the discovery of isotactic polymerisation of propylene using shconocene catalysts, stmcturaHy analogous hafnium catalysts produced from hafnium tetrachloride [13499-05-3] were found to produce high yields of high molecular weight polypropylene (55), but not enough to lead to commercial development. [Pg.444]

Hafnium Carbide. Hafnium carbide, HfC, is a dark gray brittle soHd. This carbide can be prepared by heating an intimate mixture of the elements or by the reaction of hafnium tetrachloride with methane at 2100°C, but is commonly produced by the reaction of hafnium oxide with lampblack... [Pg.444]

Hafnium tetrabromide [13777-22-5], HfBr, is very similar to the tetrachloride in both its physical and chemical properties. Hafnium tetraiodide [13777-23-6], Hfl, is produced by reaction of iodine with hafnium metal at 300°C or higher. At temperatures above 1200°C, the iodide dissociates to hafnium metal and iodine. These two reactions are the basis for the iodide-bar refining process. Hafnium iodide is reported to have three stable crystalline forms at 263—405°C (60). [Pg.445]

Hafnium hydride is brittle and easily cmshed to very fine particle sizes. It is usually produced as an intermediate in the process of making hafnium powder from massive hafnium metal. The hydrogen can be removed by high vacuum pumping above 600°C. [Pg.445]

An alloy of molybdenum containing 1.2% hafnium with carbon at the level of 0.08—0.10% has a slight advantage over TZM. This alloy has been produced in small quantities for special extmsion dies and ejector pins in the isothermal forging of superalloys. [Pg.467]

Niobium is important as an alloy addition in steels (see Steel). This use consumes over 90% of the niobium produced. Niobium is also vital as an alloying element in superalloys for aircraft turbine engines. Other uses, mainly in aerospace appHcations, take advantage of its heat resistance when alloyed singly or with groups of elements such as titanium, tirconium, hafnium, or tungsten. Niobium alloyed with titanium or with tin is also important in the superconductor industry (see High temperature alloys Refractories). [Pg.20]

The manufacture of refractory metals such as titanium, zirconium, and hafnium by sodium reduction of their haHdes is a growing appHcation, except for titanium, which is produced principally via magnesium reduction (109—114). Typical overall haHde reactions are... [Pg.169]

The Phalaborwa complex ia the northeastern Transvaal is a complex volcanic orebody. Different sections are mined to recover magnetite, apatite, a copper concentrate, vermicuhte, and baddeleyite, Hsted in order of aimual quantities mined. The baddeleyite is contained in the foskorite ore zone at a zirconium oxide concentration of 0.2%, and at a lesser concentration in the carbonatite orebody. Although baddeleyite is recovered from the process tailings to meet market demand, the maximum output could be limited by the requirements for the magnetite and apatite. The baddeleyite concentrate contains ca 96% zirconium oxide with a hafnium content of 2% Hf/Zr + Hf. A comminuted, chemically beneficiated concentrate containing ca 99% zirconium oxide is produced also. [Pg.426]

Zirconium and hafnium are separated by fractional distillation of the anhydrous tetrachlorides in a continuous molten solvent salt KCl—AlCl system at atmospheric pressure (56,57). Zirconium and hafnium tetrachlorides are soluble in KCl—AlCl without compound formation and are produced simultaneously. [Pg.430]

Pure zirconium tetrachloride is obtained by the fractional distillation of the anhydrous tetrachlorides in a high pressure system (58). Commercial operation of the fractional distillation process in a batch mode was proposed by Ishizuka Research Institute (59). The mixed tetrachlorides are heated above 437°C, the triple point of zirconium tetrachloride. AH of the hafnium tetrachloride and some of the zirconium tetrachloride are distiUed, leaving pure zirconium tetrachloride. The innovative aspect of this operation is the use of a double-sheU reactor. The autogenous pressure of 3—4.5 MPa (30—45 atm) inside the heated reactor is balanced by the nitrogen pressure contained in the cold outer reactor (60). However, previous evaluation in the former USSR of the binary distiUation process (61) has cast doubt on the feasibHity of also producing zirconium-free hafnium tetrachloride by this method because of the limited range of operating temperature imposed by the smaH difference in temperature between the triple point, 433°C, and critical temperature, 453°C, a hafnium tetrachloride. [Pg.430]

Monovalent Halides. Zirconium monochloride [14989-34-5], ZrCl, was discovered during electrorefining studies of zirconium in a SrCl2—NaCl—ZrCl4 melt intended to produce pure ductile hafnium-depleted zirconium from cmde zirconium anodes (180—181). The monochloride is also called Zirklor. It is obtained as black flakes with a graphite sHp-plane behavior and was proposed as a lubricant (182,183). [Pg.436]

Hafnium nitride (HfN) is a refractory which is resistant to chemical attack. It is produced by CVD mostly on an experimental basis. Its properties and characteristics are summarized in Table 10.4. [Pg.275]

The parent nuclei of the hafnium Mossbauer isotopes can be produced by the following reactions ... [Pg.286]

The theoretical lower limit of the molecular weight distribution for the diblock OBC is 1.58. The observed MJMn of 1.67 indicates that the sample contains a very large fraction of polymer chains with the anticipated diblock architecture. The estimated number of chains per zinc and hafnium are also indicative of a high level of CCTP. The Mn of the diblock product corresponds to just over two chains per zinc but 380 chains per hafnium. This copolymer also provides a highly unusual example of a polyolefin produced in a continuous process with a molecular weight distribution less than that expected for a polymer prepared with a single-site catalyst (in absence of chain shuttling). [Pg.99]

Apart from the reactions described above for the formation of thin films of metals and compounds by the use of a solid source of the material, a very important industrial application of vapour phase transport involves the preparation of gas mixtures at room temperature which are then submitted to thermal decomposition in a high temperature furnace to produce a thin film at this temperature. Many of the molecular species and reactions which were considered earlier are used in this procedure, and so the conclusions which were drawn regarding choice and optimal performance apply again. For example, instead of using a solid source to prepare refractory compounds, as in the case of silicon carbide discussed above, a similar reaction has been used to prepare titanium boride coatings on silicon carbide and hafnium diboride coatings on carbon by means of a gaseous input to the deposition furnace (Choy and Derby, 1993) (Shinavski and Diefendorf, 1993). [Pg.106]


See other pages where Hafnium producers is mentioned: [Pg.55]    [Pg.131]    [Pg.439]    [Pg.440]    [Pg.440]    [Pg.442]    [Pg.442]    [Pg.445]    [Pg.445]    [Pg.121]    [Pg.128]    [Pg.323]    [Pg.383]    [Pg.398]    [Pg.411]    [Pg.435]    [Pg.436]    [Pg.445]    [Pg.106]    [Pg.956]    [Pg.962]    [Pg.965]    [Pg.967]    [Pg.58]    [Pg.216]    [Pg.59]    [Pg.332]    [Pg.48]    [Pg.564]    [Pg.125]    [Pg.205]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Alternatives for Producing Hafnium-Free Zirconium from Zircon

Major Hafnium Metal Producers

© 2024 chempedia.info