Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical epoxy resins

The model adhesive used was Dow Chemical epoxy resin D.E.R. 331 mixed with an M-5 silica filler, a dicyandiamide ( DICY ) curing agent, a tertiary amine accelerator (PDMU), and various amounts of rubber toughener (Kelpoxy G272-100), details of which have been listed elsewhere [33], The final products, according to the rubber concentration level, were designated as adhesives A (0% rubber), B (4.1 %), C (8.1 %), and E (15%). Adherends were cut from 25-mm-wide 6061-T6 aluminum alloy bar stock. [Pg.397]

Bisphenol A. One mole of acetone condenses with two moles of phenol to form bisphenol A [80-05-07] which is used mainly in the production of polycarbonate and epoxy resins. Polycarbonates (qv) are high strength plastics used widely in automotive appHcations and appHances, multilayer containers, and housing appHcations. Epoxy resins (qv) are used in fiber-reinforced larninates, for encapsulating electronic components, and in advanced composites for aircraft—aerospace and automotive appHcations. Bisphenol A is also used for the production of corrosion- and chemical-resistant polyester resins, polysulfone resins, polyetherimide resins, and polyarylate resins. [Pg.99]

Epoxy phenoHc coatings either are made by blending of a soHd epoxy resin with a phenoHc resin or are the products of the precondensation of a mixture of two resins. A three-dimensional stmcture is formed during curing which combines the good adhesion properties of the epoxy resin with the high chemical resistance properties of the phenoHc resin. The balanced properties of epoxy phenoHc coatings have made them almost universal in their appHcation on food cans. [Pg.450]

Liquids. Approximately 170,000 railroad tank cars are used in the United States. The interior surfaces of these cars are tailored to carry a wide variety of products and are constmcted of steel which is either unlined or lined with materials to enhance the chemical compatibiUty with a specific product these lining materials include synthetic mbber, phenoHc or modified epoxy resins, or corrosion-resistant materials such as aluminum, nickel-bearing steel, or stainless steel. [Pg.511]

The binder system of a plastic encapsulant consists of an epoxy resin, a hardener or curing agent, and an accelerating catalyst system. The conversion of epoxies from the Hquid (thermoplastic) state to tough, hard, thermoset soHds is accompHshed by the addition of chemically active compounds known as curing agents. Flame retardants (qv), usually in the form of halogens, are added to the epoxy resin backbone because epoxy resins are inherently flammable. [Pg.530]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]

Alkylated and alkenated toluenediamines are used as antioxidants (qv) in oils and elastomers (10,53,63—65), as chemical intermediates for polyamides, polyimides, and polyesterimides (53,1) and as epoxy curatives (53,58,66) (see Epoxy resins). [Pg.239]

Boron filaments are formed by the chemical vapor deposition of boron trichloride on tungsten wire. High performance reinforcing boron fibers are available from 10—20 mm in diameter. These are used mainly in epoxy resins and aluminum and titanium. Commercial uses include golf club shafts, tennis and squash racquets, and fishing rods. The primary use is in the aerospace industry. [Pg.184]

This resin, usually a viscous Hquid, is mixed with fillers, pigments, and a curing agent. The mix is then appHed to the substrate, and cure is obtained in a few hours. The product is strong, tough, and resistant to chemicals and abrasion. It is used for industrial and other doors subject to hard water. The use of epoxy resins for this purpose is only a small fraction of its total use. [Pg.327]

The thermoplastic or thermoset nature of the resin in the colorant—resin matrix is also important. For thermoplastics, the polymerisation reaction is completed, the materials are processed at or close to their melting points, and scrap may be reground and remolded, eg, polyethylene, propjiene, poly(vinyl chloride), acetal resins (qv), acryhcs, ABS, nylons, ceUulosics, and polystyrene (see Olefin polymers Vinyl polymers Acrylic ester polymers Polyamides Cellulose ESTERS Styrene polymers). In the case of thermoset resins, the chemical reaction is only partially complete when the colorants are added and is concluded when the resin is molded. The result is a nonmeltable cross-linked resin that caimot be reworked, eg, epoxy resins (qv), urea—formaldehyde, melamine—formaldehyde, phenoHcs, and thermoset polyesters (qv) (see Amino resins and plastics Phenolic resins). [Pg.456]

Vinyl ester resins generally offer mechanical properties superior to those of polyester matrices but at an increased cost. Vinyl esters are chemically similar to epoxy resins but are manufactured via a cold-curing process similar to that used in the manufacture of polyester resins. Vinyl esters offer superior resistance to water and chemical attack and are used in such appHcations as underground pipes, tank liners, and storage tanks (see Vinyl polymers). [Pg.7]

The addition—reaction product of bisphenol A [80-05-07] and glycidyl methacrylate [106-91-2] is a compromise between epoxy and methacrylate resins (245). This BSI—GMA resin polymerizes through a free-radical induced covalent bonding of methacrylate rather than the epoxide reaction of epoxy resins (246). Mineral fillers coated with a silane coupling agent, which bond the powdered inorganic fillers chemically to the resin matrix, are incorporated into BSI—GMA monomer diluted with other methacrylate monomers to make it less viscous (245). A second monomer commonly used to make composites is urethane dimethacrylate [69766-88-7]. [Pg.493]

Epoxies. The unique chemical and physical properties such as excellent chemical and corrosion resistances, electrical and physical properties, excellent adhesion, thermal insulation, low shrinkage, and reasonable material cost have made epoxy resins (qv) very attractive in electronic apphcations. [Pg.189]

The bisphenol A-derived epoxy resins are most frequendy cured with anhydrides, aUphatic amines, or polyamides, depending on desired end properties. Some of the outstanding properties are superior electrical properties, chemical resistance, heat resistance, and adhesion. Conventional epoxy resins range from low viscosity Hquids to soHd resins. [Pg.363]

Owing to relatively low viscosity, these resins offer advantages for 100% soHds (solvent-free) systems. Higher filler levels are possible because of the low viscosity. Faster bubble release is also achieved. Higher epoxy content and functionaHty of bisphenol F epoxy resins can provide improved chemical resistance compared to conventional epoxies. [Pg.363]

SoHd epoxy resins are sometimes designated as 1-, 4-, 7-, or 9-type resins these approximate the degree of polymerization. Commercial products are designated similarly, eg, Epon 1001, 1004, 1007, and 1009 (SheU Chemical Co.). The relationship between n value, epoxy equivalent weight, and melting point is shown in Table 5. [Pg.366]

Polyphenols or phenol-terminated resins are utilized to effect chemical cross-linking of epoxy resins with added catalysts or accelerators for the reaction (26). [Pg.368]

Structural Composites. Because of their exceUent adhesion, good mechanical, humidity, and chemical-resistance properties, epoxy resins are... [Pg.370]

M. Haley with R. Mulach and Y. Sakuma, "Epoxy Resins," in Chemical Economics Handbook, Stanford Research Institute International, Menlo Park, Calif., 1991. [Pg.372]

Groundwater is vulnerable to pollution by chemicals carried by rainwater, leaching from waste sites or from waste water carrying industrial or agricultural effluent. Treatment of drinking water may remove some, but not all, of these contaminants. Some polycarbonate or metal water pipes that are lined with epoxy resin lacquers may release bisphenol A. [Pg.15]

These transformers may be PVC taped, thermoplastic (polypropylene) moulded, fibreglass taped, polyester resin cast or epoxy resin cast depending upon the system voltage and the surroundings. HT indoor transformers, for instance, are generally polyester or epoxy resin cast, and are economical with good dielectric properties. They are resistant to humid, chemically contaminated and hazardous areas. Outdoor HT transformers, how-ever. may be epoxy... [Pg.457]

Until the 1970s the chemical used as the impregnating and dielectric medium for capacitor units was PCB (polychlorinated biphenyl) liquid. It was found to be toxic and unsafe for humans as well as contamination of the environment. For this reason, it is no longer used. The latest trend is to use a non-PCB, non-toxic, phenyl xylyl ethane (PXE-oil), which is a synthetic dielectric liquid of extremely low loss for insulation and impregnation of the capacitor elements or to use mixed polypropylene or allpolypropylene (PP) liquids as the dielectric. A non-oil dielectric, such as epoxy resin, is also used. [Pg.811]

In planning cathodic protection, the specific resistivity of the water, the size of the surfaces to be protected and the required protection current densities have to be determined. The protection current density depends on the type and quality of the coating. Thermosetting resins (e.g., tar-epoxy resin coatings) are particularly effective and are mostly used today on coastal structures. They are chemically... [Pg.376]

Elevated temperatures are necessary for cure and the chemical resistance of the laminates is inferior to those from unmodified resins. Because of problems in handling, the polyamides have found only limited use with epoxy resins, mainly for coating and adhesive applications. [Pg.769]


See other pages where Chemical epoxy resins is mentioned: [Pg.226]    [Pg.137]    [Pg.39]    [Pg.226]    [Pg.137]    [Pg.39]    [Pg.160]    [Pg.232]    [Pg.73]    [Pg.303]    [Pg.144]    [Pg.507]    [Pg.32]    [Pg.356]    [Pg.365]    [Pg.365]    [Pg.366]    [Pg.20]    [Pg.30]    [Pg.33]    [Pg.496]    [Pg.111]    [Pg.362]    [Pg.362]    [Pg.363]    [Pg.370]    [Pg.370]    [Pg.371]    [Pg.2461]    [Pg.758]   
See also in sourсe #XX -- [ Pg.304 ]




SEARCH



EPOXY RESIN CHEMICALLY RESISTANT MORTARS

Epoxy Resins—Shell Chemical

Epoxy resins chemical properties

Epoxy resins chemical resistance

Epoxy resins chemical structures

Epoxy resins chemically modified

© 2024 chempedia.info