Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical Chemiluminescence

Instrumentation, reagents and chemicals. Chemiluminescence was measured on a Wallac Victor 1420 Multilabel Counter (Wallac, Finland). All reagents and chemicals were analytical grade and purchased from Sigma-Aldrich. Human serum samples with T4 values measured by the Ciba Corning chemiluminescence immunoassay were kindly provided by 301 Hospital, Beijing, China. DMAE-NHS was synthesized in our laboratory. [Pg.273]

The first mfonnation on the HE vibrational distribution was obtained in two landmark studies by Pimentel [39] and Polanyi [24] in 1969 both studies showed extensive vibrational excitation of the HE product. Pimental found that tire F + H2 reaction could pump an infrared chemical laser, i.e. the vibrational distribution was inverted, with the HF(u = 2) population higher than that for the HF(u = 1) level. A more complete picture was obtained by Polanyi by measuring and spectrally analysing tlie spontaneous emission from vibrationally excited HE produced by the reaction. This infrared chemiluminescence experiment yielded relative populations of 0.29, 1 and 0.47 for the HF(u =1,2 and 3)... [Pg.876]

Spectroscopic detemiination of the HE rotational distribution is another story. In both the chemical laser and infrared chemiluminescence experiments, rotational relaxation due to collisions is faster or at least comparable to the time scale of the measurements, so that accurate detemiination of the nascent rotational distribution was not feasible. However, Nesbitt [40, 41] has recently carried out direct infrared absorption experiments on the HE product under single-collision conditions, thereby obtaining a fiill vibration-rotation distribution for the nascent products. [Pg.876]

Carrington T and Polanyi J C 1972 Chemiluminescent reactions Chemical Kinetics, Int. Rev. Sc/. Physical Chemistry senes 1, vol 9, ed J C Polanyi (London ButtenA/orths) pp 135-71... [Pg.2086]

The release of a photon following thermal excitation is called emission, and that following the absorption of a photon is called photoluminescence. In chemiluminescence and bioluminescence, excitation results from a chemical or biochemical reaction, respectively. Spectroscopic methods based on photoluminescence are the subject of Section lOG, and atomic emission is covered in Section lOH. [Pg.423]

One of the first applications of this technique was to the enrichment of and "B isotopes, present as 18.7 and 81.3 per cent, respectively, in natural abundance. Boron trichloride, BCI3, dissociates when irradiated with a pulsed CO2 laser in the 3g vibrational band at 958 cm (vj is an e vibration of the planar, D j, molecule). One of the products of dissociation was detected by reaction with O2 to form BO which then produced chemiluminescence (emission of radiation as a result of energy gained by chemical reaction) in the visible region due to A U — fluorescence. Irradiation in the 3g band of BCls or "BCI3 resulted in °BO or BO chemiluminescence. The fluorescence of °BO is easily resolved from that of "BO. [Pg.376]

For both aqueous and nonaqueous liquids, MBSL is caused by chemical reactions of high energy species formed duriag cavitation by bubble coUapse, and its principal source is most probably not blackbody radiation or electrical discharge. MBSL is predominandy a form of chemiluminescence. [Pg.260]

Chemiluminescent Immunoassay. Chemiluminescence is the emission of visible light resulting from a chemical reaction. The majority of such reactions are oxidations, using oxygen or peroxides, and among the first chemicals studied for chemiluminescence were luminol (5-amino-2,3-dihydro-l,4-phthalazinedione [521-31-3]) and its derivatives (see Luminescent materials, chemiluminescence). Luminol or isoluminol can be directly linked to antibodies and used in a system with peroxidase to detect specific antigens. One of the first appHcations of this approach was for the detection of biotin (31). [Pg.27]

In principle, one molecule of a chemiluminescent reactant can react to form one electronically excited molecule, which in turn can emit one photon of light. Thus one mole of reactant can generate Avogadro s number of photons defined as one einstein (ein). Light yields can therefore be defined in the same terms as chemical product yields, in units of einsteins of light emitted per mole of chemiluminescent reactant. This is the chemiluminescence quantum yield which can be as high as 1 ein/mol or 100%. [Pg.262]

Chemical off—on switching of the chemiluminescence of a 1,2-dioxetane (9-benzyhdene-10-methylacridan-l,2-dioxetane [66762-83-2] (9)) was first described in 1980 (33). No chemiluminescence was observed when excess acetic acid was added to (9) but chemiluminescence was recovered when triethylamine was added. The off—on switching was attributed to reversible protonation of the nitrogen lone pair and modulation of chemically induced electron-exchange luminescence (CIEEL). Base-induced decomposition of a 1,2-dioxetane of 2-phen5l-3-(4 -hydroxyphenyl)-l,4-dioxetane (10) by deprotonation of the phenoHc hydroxy group has also been described (34). [Pg.264]

Subsequent studies (63,64) suggested that the nature of the chemical activation process was a one-electron oxidation of the fluorescer by (27) followed by decomposition of the dioxetanedione radical anion to a carbon dioxide radical anion. Back electron transfer to the radical cation of the fluorescer produced the excited state which emitted the luminescence characteristic of the fluorescent state of the emitter. The chemical activation mechanism was patterned after the CIEEL mechanism proposed for dioxetanones and dioxetanes discussed earher (65). Additional support for the CIEEL mechanism, was furnished by demonstration (66) that a linear correlation existed between the singlet excitation energy of the fluorescer and the chemiluminescence intensity which had been shown earher with dimethyl dioxetanone (67). [Pg.266]

The first detailed investigation of the reaction kinetics was reported in 1984 (68). The reaction of bis(pentachlorophenyl) oxalate [1173-75-7] (PCPO) and hydrogen peroxide cataly2ed by sodium saUcylate in chlorobenzene produced chemiluminescence from diphenylamine (DPA) as a simple time—intensity profile from which a chemiluminescence decay rate constant could be determined. These studies demonstrated a first-order dependence for both PCPO and hydrogen peroxide and a zero-order dependence on the fluorescer in accord with an earher study (9). Furthermore, the chemiluminescence quantum efficiencies Qc) are dependent on the ease of oxidation of the fluorescer, an unstable, short-hved intermediate (r = 0.5 /is) serves as the chemical activator, and such a short-hved species "is not consistent with attempts to identify a relatively stable dioxetane as the intermediate" (68). [Pg.266]

V. Ya. Shlyapiutokh and co-workers. Chemiluminescence Techniques in Chemical Reactions, Consultants Bureau, New York, 1968. [Pg.278]

Chemiluminescence. Chemiluminescence (262—265) is the emission of light duting an exothermic chemical reaction, generaUy as fluorescence. It often occurs ia oxidation processes, and enzyme-mediated bioluminescence has important analytical appHcations (241,262). Chemiluminescence analysis is highly specific and can reach ppb detection limits with relatively simple iastmmentation. Nitric oxide has been so analyzed from reaction with ozone (266—268), and ozone can be detected by the emission at 585 nm from reaction with ethylene. [Pg.320]

Chemiluminescent labels, in which the luminescence is generated by a chemical oxidation step, and bioluminescent labels, where the energy for light emission is produced by an enzyme-substrate reaction, are additional labeling types (39,42). Luminol [521 -31 -3] CgHyN202, and acridine [260-94-6] C H N, derivatives are often used as chemiluminescent labels. [Pg.101]

In this work the development of mathematical model is done assuming simplifications of physico-chemical model of peroxide oxidation of the model system with the chemiluminesce intensity as the analytical signal. The mathematical model allows to describe basic stages of chemiluminescence process in vitro, namely spontaneous luminescence, slow and fast flashes due to initiating by chemical substances e.g. Fe +ions, chemiluminescent reaction at different stages of chain reactions evolution. [Pg.54]

Anions of another group were derivatized with formation of gaseous chemiluminescing species. Chemical reaction - gas extraction has been used with chemiluminescence detection in the stream of canier gas in on-line mode. Rate of a number of reactions has been studied as well as kinetic curves of extraction of gaseous products. Highly sensitive and rapid hybrid procedures have been developed for the determination of lO, BrO, CIO, CIO, NO,, N03, CrO, CIO, Br, T, S, 803 with detection limits at the level of pg/L, duration of analysis 3 min. [Pg.88]

ELECTROOXIDATION, QUANTUM CHEMICAL CALCULATIONS AND CHEMILUMINESCENT ANALYSIS OF DIHYDROPYRIDINES DERIVATIVES... [Pg.101]

OXIDATIVE LUMINESCENCE OF UV ABSORBING CHEMICALS. APPLICATION TO THEIR DETERMINATION IN SUNSCREEN PRODUCTS BY REVERSED PHASE LIQUID CHROMATOGRAPHY WITH CHEMILUMINESCENCE... [Pg.157]

Nowadays all over the world considerable attention is focused on development of chemical sensors for the detection of various organic compounds in solutions and gas phase. One of the possible sensor types for organic compounds in solutions detection is optochemotronic sensor - device of liquid-phase optoelectronics that utilize effect of electrogenerated chemiluminescence. In order to enhance selectivity and broaden the range of detected substances the modification of working electrode of optochemotronic cell with organic films is used. Composition and deposition technique of modifying films considerably influence on electrochemical and physical processes in the sensor. [Pg.335]

The measurement of NO concentration is based on chemiluminescence this is light generation due to a chemical reaction. This occurs when nitrogen monoxide and ozone react with each other. [Pg.1301]


See other pages where Chemical Chemiluminescence is mentioned: [Pg.66]    [Pg.1420]    [Pg.66]    [Pg.1420]    [Pg.90]    [Pg.374]    [Pg.375]    [Pg.770]    [Pg.121]    [Pg.23]    [Pg.262]    [Pg.262]    [Pg.262]    [Pg.262]    [Pg.264]    [Pg.265]    [Pg.273]    [Pg.273]    [Pg.274]    [Pg.274]    [Pg.284]    [Pg.377]    [Pg.147]    [Pg.174]    [Pg.341]    [Pg.344]    [Pg.197]    [Pg.494]   
See also in sourсe #XX -- [ Pg.149 , Pg.399 , Pg.422 , Pg.423 , Pg.424 ]




SEARCH



© 2024 chempedia.info