Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characterization techniques vibrational spectroscopies

Vibrational spectroscopy and in particular Raman spectroscopy is by far the most useful spectroscopic technique to qualitatively characterize polysulfide samples. The fundamental vibrations of the polysulfide dianions with between 4 and 8 atoms have been calculated by Steudel and Schuster [96] using force constants derived partly from the vibrational spectra of NayS4 and (NH4)2Ss and partly from cydo-Sg. It turned out that not only species of differing molecular size but also rotational isomers like Ss of either Cy or Cs symmetry can be recognized from pronounced differences in their spectra. The latter two anions are present, for instance, in NaySg (Cs) and KySg (Cy), respectively (see Table 2). [Pg.142]

Another technique of vibrational spectroscopy suited for the characterization of solids is that of Raman spectroscopy. In this methodology, the sample is irradiated with monochromatic laser radiation, and the inelastic scattering of the source energy is used to obtain a vibrational spectrum of the analyte [20]. Since... [Pg.7]

Clearly, the potential applications for vibrational spectroscopy techniques in the pharmaceutical sciences are broad, particularly with the advent of Fourier transform instrumentation at competitive prices. Numerous sampling accessories are currently available for IR and Raman analysis of virtually any type of sample. In addition, new sampling devices are rapidly being developed for at-line and on-line applications. In conjunction with the numerous other physical analytical techniques presented within this volume, the physical characterization of a pharmaceutical solid is not complete without vibrational analysis. [Pg.88]

The book has been written as an introductory text, not as an exhaustive review. It is meant for students at the start of their Ph.D. projects and for anyone else who needs a concise introduction to catalyst characterization. Each chapter describes the physical background and principles of a technique, a few recent applications to illustrate the type of information that can be obtained, and an evaluation of possibilities and limitations. A chapter on case studies highlights a few important catalyst systems and illustrates how powerful combinations of techniques are. The appendix on the surface theory of metals and on chemical bonding at surfaces is included to provide better insight in the results of photoemission, vibrational spectroscopy and thermal desorption. [Pg.10]

Vibrational spectroscopy techniques are quite suitable for in situ characterization of catalysts. Especially infrared spectroscopy has been used extensively for characterization of the electrode/solution interphases, adsorbed species and their dependence on the electrode potential.33,34 Raman spectroscopy has been used to a lesser extent in characterizing non-precious metal ORR catalysts, most of the studies being related to characterization of the carbon structures.35 A review of the challenges and applications associated with in situ Raman Spectroscopy at metal electrodes has been provided by Pettinger.36... [Pg.339]

A promising recent development in the study of nitrenium ions has been the introduction of time-resolved vibrational spectroscopy for their characterization. These methods are based on pulsed laser photolysis. However, they employ either time resolved IR (TRIR) or time-resolved resonance Raman (TRRR) spectroscopy as the mode of detection. While these detection techniques are inherently less sensitive than UV-vis absorption, they provide more detailed and readily interpretable spectral information. In fact, it is possible to directly calculate these spectra using relatively fast and inexpensive DFT and MP2 methods. Thus, spectra derived from experiment can be used to validate (or falsify) various computational treatments of nitrenium ion stmctures and reactivity. In contrast, UV-vis spectra do not lend themselves to detailed structural analysis and, moreover, calculating these spectra from first principles is still expensive and highly approximate. [Pg.636]

The first chapter of this volume, by Sheppard and de la Cruz, addresses the application of vibrational spectroscopy for the characterization of adsorbed hydrocarbons. This chapter is a successor to the 1958 Advances in Catalysis chapter about infrared spectra of adsorbed species, authored by the pioneers Eischens and Pliskin. Vibrational spectroscopy continues to provide some of the most incisive techniques available for determination of adsorbate structures. The present chapter is concerned with introductory principles and spectra of adsorbed alkenes a sequel is scheduled to appear in a subsequent volume of Advances in Catalysis. [Pg.446]

R.K. Dukor, Protein conformational studies using vibrational spectroscopy Comparison of techniques. Paper presented at 232nd ACS national meeting, biophysical and biomolecular symposium New and emerging techniques for protein characterization, Hilton, San Francisco, 10-14 September 2006... [Pg.236]

The vast literature associated with flavanoid chemistry precludes a discussion here but two valuable reviews have been published. The first reviews a number of spectroscopic techniques used for flavonoid analysis, with a strong emphasis on NMR spectroscopy (plus also mass spectrometry, vibrational spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, X-ray crystallography, and circular dichrosim (CD)) . The second review deals with NMR methods that have been successful in the characterization of phenolic acids and flavonoids from plant extracts that have not been separated or isolated as single components. The emphasis of the article is 2-D NMR methodology and a variety of experiments such as total correlated spectroscopy (TOCSY), COSY, nuclear Overhauser enhancement spectroscopy (NOESY) and heteronuclear multiple quantum correlation (HMQC) are discussed . [Pg.343]

One of the emerging biological and biomedical application areas for vibrational spectroscopy and chemometrics is the characterization and discrimination of different types of microorganisms [74]. A recent review of various FTIR (Fourier transform infrared spectrometry) techniques describes such chemometrics methods as hierarchical cluster analysis (HCA), principal component analysis (PCA), and artificial neural networks (ANN) for use in taxonomical classification, discrimination according to susceptibility to antibiotic agents, etc. [74],... [Pg.516]

At this point a characterization technique with a higher chemical resolution is desirable because such functionalization plus surface analytical combination experiments are extremely difficult to perform in a clean and reproducible way. Vibrational spectroscopy such as FT-1R has been developed into such a tool, after several methodical improvements concerning sample preparation and detector sensitivity. In situ oxidation experiments are still very difficult as heated black carbon is a perfect 1R emission source and interferes with any conventional detection in the spectral range of carbon-oxygen fingerprint vibrations. [Pg.135]

Vibrational spectroscopy is a very versatile and, chemically, well-resolved technique for the characterization of carbon-oxygen functional groups. The immense absorption problems of earlier experiments seems to be overcome in present times with modem FT-IR, DRIFTS or photoacoustic detection instruments. [Pg.137]

Vibrational spectroscopy is an important tool for the characterization of various chemical species. Valuable information regarding molecular structures as well as intra- and intermolecular forces can be extracted from vibrational spectral data. Recent advances, such as the introduction of laser sources to Raman spectroscopy, the commercial availability of Fourier transform infrared spectrometers, and the continuing development and application of the matrix-isolation technique to a variety of chemical systems, have greatly enhanced the utility of vibrational spectroscopy to chemists. [Pg.231]

Molecules which are isolated in a noble gas matrix can be characterized by a wide range of spectroscopic techniques. However, the most common and most powerful tool is vibrational spectroscopy, on which this chapter focuses. [Pg.298]

Infrared, near-infrared (see Sec. 6.2), and Raman high-pressure techniques are very suitable tools for the characterization of fluid states and especially for the quantitative analysis of fluids. Sec. 6.7.2 shows a few cells which are u.sed for the vibrational spectroscopy of fluids at pressures up to a maximum of 7 kbar and at temperatures up to 650 °C, although the maximum conditions of both pressure and temperature arc not simultaneously applied (see also Buback, 1991). Sec. 6.7.3 describes changes in the vibrational spectra of polar substances and of aqueous solutions, and Sec. 6.7.4 presents a few applications of high-pressure spectroscopy in the investigation of chemical transformations. [Pg.642]

The radioactive nature of the actinides, especially the transuranics, can introduce significant challenges in the characterization of their complexes. In order to prevent contamination, multiple layers of containment are often required, which can limit the types of studies that can be undertaken. However, a suite of spectroscopic tools has been used to study the chemistry and speciation of the actinides. A partial list of these techniques includes absorption, emission and vibrational spectroscopies, X-ray absorption and diffraction, and multinuclear magnetic resonance. [Pg.13]

The structure and reactivity of ethylene chemisorbed on transition-metal surfaces are of fimdamental importance in surface science and heterogeneous catalysis. HREELS has been foremost among the surface characterization techniques employed in fact, the first vibrational spectroscopic study of ethylene chemisorbed on Pt(lll) was carried out with electron energy-loss spectroscopy (EELS) almost a decade before IRAS was employed. ... [Pg.6056]


See other pages where Characterization techniques vibrational spectroscopies is mentioned: [Pg.325]    [Pg.486]    [Pg.45]    [Pg.379]    [Pg.199]    [Pg.393]    [Pg.240]    [Pg.782]    [Pg.278]    [Pg.473]    [Pg.60]    [Pg.60]    [Pg.156]    [Pg.209]    [Pg.134]    [Pg.100]    [Pg.304]    [Pg.340]    [Pg.62]    [Pg.277]    [Pg.87]    [Pg.209]    [Pg.323]    [Pg.48]    [Pg.316]    [Pg.357]    [Pg.229]    [Pg.288]    [Pg.133]    [Pg.136]    [Pg.393]    [Pg.4746]   


SEARCH



Characterization techniques

Experimental characterization techniques vibrational spectroscopy

Spectroscopy characterization

Spectroscopy techniques

Vibration /vibrations spectroscopy

Vibrational techniques

© 2024 chempedia.info