Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Channel in zeolites

The channels in zeolite A run parallel to the three cubic axial directions, and are entered by a port of diameter 410 pm, determined by an 8-ring window this is still considerably smaller than the diameter of the internal cavity, which measures 1140 pm across. The computer model of zeolite A in Figure 7.10 clearly illustrates the 8-ring windows, the channels running through the structure and the cavities created by their intersection. [Pg.311]

Among the inorganic templates, zeolite produces more regulated pores as compared to the silica template. If nano-channels in zeolite are completely filled with carbonaceous precursor and then the carbon materials are extracted from the zeolite framework, one can obtain the porous carbon of which structure reflects the porosity of the original zeolite template. The ordered mesoporous silica templates, e.g., MCM-4 838,39,47 and SBA-1547 have been employed to prepare the ordered porous carbons by the procedures involving the pore filling of the silica template with carbonaceous precursor followed by carbonization and silica dissolution. The resulting pore sizes of the ordered mesoporous carbons are smaller than about 10 nm. [Pg.143]

Table 6 Examples of the notation used in Baerlocher, Meier, and Olson to describe the major channels in zeolitic frameworks... Table 6 Examples of the notation used in Baerlocher, Meier, and Olson to describe the major channels in zeolitic frameworks...
Simple energy minimization did not result in reasonable results for the zeolite L system areas of severe strain were noted, which were not visible in the molecular graphics analysis. As the sorbate moved through the channels in zeolite L, the isopropyl groups were caught on bits of zeolite. Horsley and co-... [Pg.264]

The channels in zeolites ate only a few molecular diameters in size, and overlapping potential fields... [Pg.646]

The regular windows and channels in zeolites with specific dimensions are the basis for their shape-selective properties and accordingly their utiUzation in purification of gas mixtures or mixtures of branched and linear hydrocarbons. The ability to preferentially adsorb certain molecules and simultaneously excluding others led to the introduction of the term molecular sieves for zeoUtes and their appUca-tions in separation techniques based on their size-exclusion properties. [Pg.2419]

Experiments on capillary hlling of molten metals in 0.6-1.2 nm channels in zeolites show a much smaller threshold closer to 1 nm. This value was obtained considering that interphase transition... [Pg.373]

The diffusion, location and interactions of guests in zeolite frameworks has been studied by in-situ Raman spectroscopy and Raman microscopy. For example, the location and orientation of crown ethers used as templates in the synthesis of faujasite polymorphs has been studied in the framework they helped to form [4.297]. Polarized Raman spectra of p-nitroaniline molecules adsorbed in the channels of AIPO4-5 molecular sieves revealed their physical state and orientation - molecules within the channels formed either a phase of head-to-tail chains similar to that in the solid crystalline substance, with a characteristic 0J3 band at 1282 cm , or a second phase, which is characterized by a similarly strong band around 1295 cm . This second phase consisted of weakly interacting molecules in a pseudo-quinonoid state similar to that of molten p-nitroaniline [4.298]. [Pg.262]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

Table 1.2 Calculated heats of adsorption and adsorption constants for various hydrocarbons in zeolites with different channel dimensions. Table 1.2 Calculated heats of adsorption and adsorption constants for various hydrocarbons in zeolites with different channel dimensions.
Conclusive evidence has been presented that surface-catalyzed coupling of alcohols to ethers proceeds predominantly the S 2 pathway, in which product composition, oxygen retention, and chiral inversion is controlled 1 "competitive double parkir of reactant alcohols or by transition state shape selectivity. These two features afforded by the use of solid add catalysts result in selectivities that are superior to solution reactions. High resolution XPS data demonstrate that Brpnsted add centers activate the alcohols for ether synthesis over sulfonic add resins, and the reaction conditions in zeolites indicate that Brpnsted adds are active centers therein, too. Two different shape-selectivity effects on the alcohol coupling pathway were observed herein transition-state constraint in HZSM-5 and reactant approach constraint in H-mordenite. None of these effects is a molecular sieving of the reactant molecules in the main zeolite channels, as both methanol and isobutanol have dimensions smaller than the main channel diameters in ZSM-S and mordenite. [Pg.610]

Zeolites have ordered micropores smaller than 2nm in diameter and are widely used as catalysts and supports in many practical reactions. Some zeolites have solid acidity and show shape-selectivity, which gives crucial effects in the processes of oil refining and petrochemistry. Metal nanoclusters and complexes can be synthesized in zeolites by the ship-in-a-bottle technique (Figure 1) [1,2], and the composite materials have also been applied to catalytic reactions. However, the decline of catalytic activity was often observed due to the diffusion-limitation of substrates or products in the micropores of zeolites. To overcome this drawback, newly developed mesoporous silicas such as FSM-16 [3,4], MCM-41 [5], and SBA-15 [6] have been used as catalyst supports, because they have large pores (2-10 nm) and high surface area (500-1000 m g ) [7,8]. The internal surface of the channels accounts for more than 90% of the surface area of mesoporous silicas. With the help of the new incredible materials, template synthesis of metal nanoclusters inside mesoporous channels is achieved and the nanoclusters give stupendous performances in various applications [9]. In this chapter, nanoclusters include nanoparticles and nanowires, and we focus on the synthesis and catalytic application of noble-metal nanoclusters in mesoporous silicas. [Pg.383]

Vibrational dynamics of small molecules adsorbed on cation sites in zeolite channel systems IR and DFT investigation... [Pg.117]

Nitrogen adsorption/desorption isotherms on Zeolite and V-Mo-zeolite are very similar and close to a type I characteristic of microporous materials, although the V-Mo-catalysts show small hysterisis loop at higher partial pressures, which reveals some intergranular mesoporosity. Table 1 shows that BET surface area, microporous and porous volumes, decrease after the introduction of Molybdenum and vanadium in zeolite indicating a textural alteration probably because of pore blocking by vanadium or molybdenum species either dispersed in the channels or deposited at the outer surface of the zeolite. The effect is far less important for the catalysts issued from ZSM-5. [Pg.130]

Selectivity to p-isopropyl toluene being close to 30 % was achieved with SSZ-33, SSZ-35 and Beta zeolites. This is connected with the 12-MR channels in SSZ-33 and Beta. In the case of SSZ-35 the presence of 18-MR cavities decreased the differences in the rate of transport of individual isopropyl toluene isomers. In contrast, ZSM-5 zeolite behaves as para-selective catalyst in this alkylation reaction, the selectivity to p-isopropyl toluene reached 76 % after 180 min of T-O-S. [Pg.278]

Monte Carlo simulations and energy minimization procedures of the non-bonding interactions between rigid molecules and fixed zeolite framework provide a reasonable structural picture of DPP occluded in acidic ZSM-5. Molecular simulations carried out for DPB provide evidence of DPB sorption into the void space of zeolites and the preferred locations lay in straight channels in the vicinity of the intersection with the zigzag channel in interaction with H+ cation (figure 1). [Pg.378]

DPB as well as other DPP molecules (t-stilbene, diphenyl-hexatriene) with relatively low ionization potential (7.4-7.8 eV) and low vapor pressure was successfully incorporated in the straight channel of acidic ZSM-5 zeolite. DPP lies in the intersection of straight channel and zigzag channel in the vicinity of proton in close proximity of Al framework atom. The mere exposure of DPP powder to Bronsted acidic ZSM-5 crystallites under dry and inert atmosphere induced a sequence of reactions that takes place during more than 1 year to reach a stable system which is characterized by the molecule in its neutral form adsorbed in the channel zeolite. Spontaneous ionization that is first observed is followed by the radical cation recombination according to two paths. The characterization of this phenomenon shows that the ejected electron is localized near the Al framework atom. The reversibility of the spontaneous ionization is highlighted by the recombination of the radical cation or the electron-hole pair. The availability of the ejected electron shows that ionization does not proceed as a simple oxidation but stands for a real charge separated state. [Pg.380]


See other pages where Channel in zeolites is mentioned: [Pg.70]    [Pg.140]    [Pg.342]    [Pg.345]    [Pg.347]    [Pg.349]    [Pg.273]    [Pg.198]    [Pg.11]    [Pg.396]    [Pg.348]    [Pg.70]    [Pg.140]    [Pg.342]    [Pg.345]    [Pg.347]    [Pg.349]    [Pg.273]    [Pg.198]    [Pg.11]    [Pg.396]    [Pg.348]    [Pg.286]    [Pg.33]    [Pg.455]    [Pg.383]    [Pg.235]    [Pg.210]    [Pg.69]    [Pg.87]    [Pg.89]    [Pg.131]    [Pg.182]    [Pg.323]    [Pg.78]    [Pg.211]    [Pg.209]    [Pg.287]    [Pg.224]   
See also in sourсe #XX -- [ Pg.46 , Pg.555 ]




SEARCH



Zeolite channels

© 2024 chempedia.info