Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous ordered

So far, we have discussed various self-assembly and templating mechanisms geared towards the synthesis of porous, ordered materials at different length scales. As was mentioned previously, hierarchically ordered materials that simultaneously exhibit order over all length scales are very attractive novel additions whose synthesis usually requires a combination of all of the techniques mentioned previously. Patterning of mesopores and macropores simultaneously achieves structures with order on several length scales. [Pg.59]

The need to overcome the disadvantages of each class of membrane drives research for novel, composite materials that combine the advantageous properties of each class [159]. LLCs have potential to offer desirable hybrids of these two types of materials, as they allow for the incorporation of a porous, ordered nanostructure within an otherwise dense film. LLC membranes capable of performing several different applications, such as... [Pg.212]

The as-synthesized mesostructures obtained from these six methods consist of spatially and chemically well-defined aiTays containing inorganic species and organic template molecules which are not porous. Ordered pore structures result when the surfactant templates are removed from the channels between metal oxide domains. Removal of the surfactant templates is commonly achieved by calcination at 400-800°C or by extraction with solvents that have high solubilities for the corresponding surfactant templates. When porosity is maintained, calcination provides a measure of the chemical and thermal robustness to the matrix. [Pg.846]

This description is traditional, and some further comment is in order. The flat region of the type I isotherm has never been observed up to pressures approaching this type typically is observed in chemisorption, at pressures far below P. Types II and III approach the line asymptotically experimentally, such behavior is observed for adsorption on powdered samples, and the approach toward infinite film thickness is actually due to interparticle condensation [36] (see Section X-6B), although such behavior is expected even for adsorption on a flat surface if bulk liquid adsorbate wets the adsorbent. Types FV and V specifically refer to porous solids. There is a need to recognize at least the two additional isotherm types shown in Fig. XVII-8. These are two simple types possible for adsorption on a flat surface for the case where bulk liquid adsorbate rests on the adsorbent with a finite contact angle [37, 38]. [Pg.618]

In order to describe any electrochemical cell a convention is required for writing down the cells, such as the concentration cell described above. This convention should establish clearly where the boundaries between the different phases exist and, also, what the overall cell reaction is. It is now standard to use vertical lines to delineate phase boundaries, such as those between a solid and a liquid or between two innniscible liquids. The junction between two miscible liquids, which might be maintained by the use of a porous glass frit, is represented by a single vertical dashed line, j, and two dashed lines, jj, are used to indicate two liquid phases... [Pg.602]

To be specific let us have in mind a picture of a porous catalyst pellet as an assembly of powder particles compacted into a rigid structure which is seamed by a system of pores, comprising the spaces between adjacent particles. Such a pore network would be expected to be thoroughly cross-linked on the scale of the powder particles. It is useful to have some quantitative idea of the sizes of various features of the catalyst structur< so let us take the powder particles to be of the order of 50p, in diameter. Then it is unlikely that the macropore effective diameters are much less than 10,000 X, while the mean free path at atmospheric pressure and ambient temperature, even for small molecules such as nitrogen, does not exceed... [Pg.77]

In liquid-solid adsorption chromatography (LSC) the column packing also serves as the stationary phase. In Tswett s original work the stationary phase was finely divided CaCOa, but modern columns employ porous 3-10-)J,m particles of silica or alumina. Since the stationary phase is polar, the mobile phase is usually a nonpolar or moderately polar solvent. Typical mobile phases include hexane, isooctane, and methylene chloride. The usual order of elution, from shorter to longer retention times, is... [Pg.590]

If the solute is uniformly distributed through the soHd phase the material near the surface dissolves first to leave a porous stmcture in the soHd residue. In order to reach further solute the solvent has to penetrate this outer porous region the process becomes progressively more difficult and the rate of extraction decreases. If the solute forms a large proportion of the volume of the original particle, its removal can destroy the stmcture of the particle which may cmmble away, and further solute maybe easily accessed by solvent. In such cases the extraction rate does not fall as rapidly. [Pg.87]

Cross-Flow Filtration in Porous Pipes. Another way of limiting cake growth is to pump the slurry through porous pipes at high velocities of the order of thousands of times the filtration velocity through the walls of the pipes. This is ia direct analogy with the now weU-estabHshed process of ultrafiltration which itself borders on reverse osmosis at the molecular level. The three processes are closely related yet different ia many respects. [Pg.412]

The idea of ultrafiltration has been extended ia recent years to the filtration of particles ia the micrometer and submicrometer range ia porous pipes, usiag the same cross-flow principle. In order to prevent blocking, thicker flow channels are necessary, almost exclusively ia the form of tubes. The process is often called cross-flow microfiltration but the term cross-flow filtration is used here. [Pg.412]

Stabilization. A critical step in preparing sol—gel products and especially Type VI siHca optical components is stabilization of the porous stmcture as indicated in Figure 1. Both thermal and chemical stabilization is required in order for the material to be used in an ambient environment. The reason for the stabilization treatment is the large concentration of hydroxyls on the surface of the pores of these high (>400 /g) surface area materials. [Pg.255]

Great care is needed in the design of autoclaves and sterilization cycles because of the requirement for the presence of moisture. The autoclave must be loaded to allow complete steam penetration to occur in all parts of the load before timing of the sterilization cycle commences. The time required for complete penetration, the so-called heat-up time, varies with different autoclave constmction and different types of loads and packaging materials. The time may not exceed specific limits in order to guarantee reproducibility and, for porous loads, saturated steam. The volume of each container has a considerable effect on the heatup time whenever fluids are sterilized. Thermocouples led into the chamber through a special connector are often employed to determine heatup times and peak temperatures. The pressure is refleved at the end of each sterilization cycle. Either vented containers must be used or... [Pg.407]

Another type has several flat plates manifolded into a plastic header. The surface of the laminate is suitable for dip-casting membranes, whereas the interior is several orders of magnitude more porous. Permeate collects in the center of the laminate and drains into the header. [Pg.301]

Reactants must diffuse through the network of pores of a catalyst particle to reach the internal area, and the products must diffuse back. The optimum porosity of a catalyst particle is deterrnined by tradeoffs making the pores smaller increases the surface area and thereby increases the activity of the catalyst, but this gain is offset by the increased resistance to transport in the smaller pores increasing the pore volume to create larger pores for faster transport is compensated by a loss of physical strength. A simple quantitative development (46—48) follows for a first-order, isothermal, irreversible catalytic reaction in a spherical, porous catalyst particle. [Pg.171]


See other pages where Porous ordered is mentioned: [Pg.29]    [Pg.239]    [Pg.29]    [Pg.239]    [Pg.296]    [Pg.693]    [Pg.1870]    [Pg.3064]    [Pg.230]    [Pg.231]    [Pg.263]    [Pg.320]    [Pg.325]    [Pg.403]    [Pg.539]    [Pg.274]    [Pg.149]    [Pg.24]    [Pg.179]    [Pg.592]    [Pg.1]    [Pg.1]    [Pg.130]    [Pg.188]    [Pg.115]    [Pg.63]    [Pg.69]    [Pg.82]    [Pg.188]    [Pg.429]    [Pg.3]    [Pg.145]    [Pg.147]    [Pg.173]    [Pg.8]    [Pg.256]    [Pg.293]    [Pg.348]    [Pg.576]   
See also in sourсe #XX -- [ Pg.210 , Pg.212 ]




SEARCH



© 2024 chempedia.info