Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cerium precipitation

The main usefulness of Eh-pH diagrams consists in the immediacy of qualitative information about the effects of redox and acid-base properties of the system on elemental solubility. Concerning, for instance, cerium, figure 8.20 immediately shows that, within the stability field of water, delimited upward by oxidation boundary curve o and downward by reduction boundary curve r, the element (in the absence of other anionic ligands besides OH groups) is present in solution mainly as trivalent cerium Ce and as soluble tetravalent hydroxide Ce(OH)2. It is also evident that, with increasing pH, cerium precipitates as trivalent hydroxide Ce(OH)3. [Pg.550]

Lanthanides, especially cerium, fulfil the basic requirements for alternative corrosion inhibitors the ions form insoluble hydroxides, which enable them to be used as cathodic inhibitors they have a low toxicity and are relatively abundant in nature. Cerium has a high afimity for oxygen and the bond between cerium and oxygen is unlikely to be broken under the potentials applied. For some aluminium alloys, cerium precipitation from aqueous solutions of cerium salts was observed on cathodic intermetalhc compounds and in some instances, the oxide covered the entire specimen surface [14-19]. [Pg.204]

Originally, general methods of separation were based on small differences in the solubilities of their salts, for examples the nitrates, and a laborious series of fractional crystallisations had to be carried out to obtain the pure salts. In a few cases, individual lanthanides could be separated because they yielded oxidation states other than three. Thus the commonest lanthanide, cerium, exhibits oxidation states of h-3 and -t-4 hence oxidation of a mixture of lanthanide salts in alkaline solution with chlorine yields the soluble chlorates(I) of all the -1-3 lanthanides (which are not oxidised) but gives a precipitate of cerium(IV) hydroxide, Ce(OH)4, since this is too weak a base to form a chlorate(I). In some cases also, preferential reduction to the metal by sodium amalgam could be used to separate out individual lanthanides. [Pg.441]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

An alternative process for opening bastnasite is used ia Chiaa high temperature roastiag with sulfuric acid followed by an aqueous leach produces a solution containing the Ln elements. Ln is then precipitated by addition of sodium chloride as a mixed sulfate. Controlled precipitation of hydroxide can remove impurities and the Ln content is eventually taken up ia HCl. The initial cerium-containing product, oace the heavy metals Sm and beyond have been removed, is a light lanthanide (La, Ce, Pr, and Nd) rare-earth chloride. [Pg.366]

Ce(IV) extracts more readily iato organic solvents than do the trivalent Ln(III) ions providing a route to 99% and higher purity cerium compounds. Any Ce(III) content of mixed lanthanide aqueous systems can be oxidi2ed to Ce(IV) and the resultiag solutioa, eg, of nitrates, contacted with an organic extractant such as tributyl phosphate dissolved in kerosene. The Ce(IV) preferentially transfers into the organic phase. In a separate step the cerium can be recovered by reduction to Ce(III) followed by extraction back into the aqueous phase. Cerium is then precipitated and calcined to produce the oxide. [Pg.366]

Hydroxide. Freshly precipitated cerous hydroxide [15785-09-8] Ce(OH)2, is readily oxidized by air or oxygenated water, through poorly defined violet-tinged mixed valence intermediates, to the tetravalent buff colored ceric hydroxide [12014-56-17, Ce(OH)4. The precipitate, which can prove difficult to filter, is amorphous and on drying converts to hydrated ceric oxide, Ce02 2H20. This commercial material, cerium hydrate [23322-64-7] behaves essentially as a reactive cerium oxide. [Pg.367]

Garboxylates. Cerium carboxylates, water-insoluble, can be made (11) by double decomposition and precipitation using water-soluble precursors, or by reaction of an insoluble precursor directly with the organic acid. Cerous oxalate [139-42-4] 2-ethyIhexanoate (octanoate),... [Pg.367]

Cerium(III) oxysulfide [12442-45-4], is a high melting stable compound that precipitates out when steel is treated with a cerium-based metal... [Pg.367]

M sulphuric acid at 25 °C is 1.43 0.05 volts. It can be used only in acid solution, best in 0.5M or higher concentrations as the solution is neutralised, cerium(IV) hydroxide [hydrated cerium(IV) oxide] or basic salts precipitate. The solution has an intense yellow colour, and in hot solutions which are not too dilute the end point may be detected without an indicator this procedure, however, necessitates the application of a blank correction, and it is therefore preferable to add a suitable indicator. [Pg.379]

Procedure. The solution should not exceed 50 mL in volume, all metallic elements should be present as nitrates, and the cerium content should not exceed 0.10g. Treat the solution with half its volume of concentrated nitric acid, and add 0.5 g potassium bromate (to oxidise the cerium). When the latter has dissolved, add ten to fifteen times the theoretical quantity of potassium iodate in nitric acid solution (see Note) slowly and with constant stirring, and allow the precipitated cerium(IV) iodate to settle. When cold, filter the precipitate through a fine filter paper (e.g. Whatman No. 42 or 542), allow to drain, rinse once, and then wash back into the beaker in which precipitation took place by means of a solution containing 0.8 g potassium iodate and 5 mL concentrated nitric acid in 100 mL. Mix thoroughly, collect the precipitate on the same paper, drain, wash back into the beaker with hot water, boil, and treat at once with concentrated nitric acid dropwise until the precipitate just dissolves (20-25 mL... [Pg.453]

Determination of thorium as sebacate and subsequent ignition to the oxide, ThOa Discussion. This procedure permits of the separation by a single precipitation of thorium from relatively large amounts of the lanthanides (Ce, La, Pr, Nd, Sm, Gd) and also from cerium(IV). [Pg.469]

The precipitate from cerium nitrate and sodium azide is explosive. See other metal azides... [Pg.1335]

Cerium Ce(IV) co-precipitation with ferric hydroxide, dissolution in hydrochloric acid, then passed through a column of bis (2 ethyl hexyl) phosphate on poly(vinylchloride), eluted with 0.3 M perchloric acid Spectrofluorimetry at 350 nm (excitation 255 nm) [626]... [Pg.292]

Ronning, Holmen, and coworkers—Ce doping of Cu/Zn/Al catalysts improves stability. Ronning et al,339 explored the impact of ceria addition to Cu/ZnO catalysts. Catalysts were prepared by co-precipitation of Cu, Zn, and Al from their corresponding nitrates. Ceria was incorporated into the catalyst by impregnation of cerium nitrate either before or after calcination (6 hours at 350 °C or 400 °C). The chemical compositions of the resulting catalysts are reported in Table 62. [Pg.208]

Kim and Thompson—site blocking by formates/carbonates over Au/ceria catalysts linked to deactivation. Kim and Thompson437 reported on the deactivation of Au/ceria catalysts. The ceria was prepared by the decomposition of cerium carbonate (BET SA ceria calcined at 400 °C = 203 m2/g) or obtained from Rhodia (BET SA ceria calcined at 400 °C = 155 m2/g). Au was added by precipitation of HAuC14, resulting in a particle distribution between 1 and 10 nm, with the majority of clusters between 2 and 7 nm, as examined by HR-TEM. The experimental catalyst was tested with respect to the Sud-Chemie water-gas shift catalysts, consisting of Cu-Zn-Al with surface area 60 m2/g, and results are reported in Table 87. [Pg.240]

A fascinating study on the surface science of copper hydride on Si02, as well as on AI2O3, ceria (cerium oxide), and ZnO, has appeared [50]. Pure, yet thermally unstable, CuH can be precipitated as a red-brown solid from aqueous cupric sulfate and hypophosphorous acid in the presence of H2SO4, and has been characterized by powder X-ray diffraction (PXRD) (Eq. 5.25). Transmission electron microscopy (TEM) data suggest that it is most stable when deposited on acidic Si02. [Pg.184]

Cerium is obtained from its ores by chemical processing and separation. The process involves separation of cerium from other rare-eartb metals present in the ore. Tbe ore is crushed, ground, and treated with acid. Tbe extract solution is buffered to pH 3 and tbe element is precipitated selectively as Ce4+ salt. Cerium also may be separated from other metals by an ion-exchange process. [Pg.200]

When H2S is passed into the solution cerium sulfide is precipitated ... [Pg.201]

Elemental composition Ce 42.18%, S 19.30%, O 38.53%. It is digested with nitric acid, diluted appropriately and analyzed for Ce by AA or ICP spectroscopy (see Cerium). The compound may be dissolved in small quantities of water (forms a basic salt when treated with large a volume of water). The solution is analyzed for sulfate ion by gravimetry following precipitation with barium chloride. Alternatively, the compound is dissolved in hot nitric acid and the solution analyzed for sulfate by ion-chromatography. [Pg.205]

Europeum generally is produced from two common rare earth minerals monazite, a rare earth-thorium orthophosphate, and bastnasite, a rare earth fluocarbonate. The ores are crushed and subjected to flotation. They are opened by sulfuric acid. Reaction with concentrated sulfuric acid at a temperature between 130 to 170°C converts thorium and the rare earths to their hydrous sulfates. The reaction is exothermic which raises the temperature to 250°C. The product sulfates are treated with cold water which dissolves the thorium and rare earth sulfates. The solution is then treated with sodium sulfate which precipitates rare earth elements by forming rare earth-sodium double salts. The precipitate is heated with sodium hydroxide to obtain rare earth hydrated oxides. Upon heating and drying, cerium hydrated oxide oxidizes to tetravalent ceric(lV) hydroxide. When the hydrated oxides are treated with hydrochloric acid or nitric acid, aU but Ce4+ salt dissolves in the acid. The insoluble Ce4+ salt is removed. [Pg.295]

Acid soluble rare earth salt solution after the removal of cerium may be subjected to ion exchange, fractional crystalhzation or solvent extraction processes to separate individual rare earths. Europium is obtained commercially from rare earths mixture by the McCoy process. Solution containing Eu3+ is treated with Zn in the presence of barium and sulfate ions. The triva-lent europium is reduced to divalent state whereby it coprecipitates as europium sulfate, EuS04 with isomorphous barium sulfate, BaS04. Mixed europium(ll) barium sulfate is treated with nitric acid or hydrogen peroxide to oxidize Eu(ll) to Eu(lll) salt which is soluble. This separates Eu3+ from barium. The process is repeated several times to concentrate and upgrade europium content to about 50% of the total rare earth oxides in the mixture. Treatment with concentrated hydrochloric acid precipitates europium(ll) chloride dihydrate, EuCb 2H2O with a yield over 99%. [Pg.295]

Gadolinium is produced from both its ores, monazite and bastnasite. After the initial steps of crushing and beneficiation, rare earths in the form of oxides are attacked by sulfuric or hydrochloric acid. Insoluble rare earth oxides are converted into soluble sulfates or chlorides. When produced from monazite sand, the mixture of sand and sulfuric acid is initially heated at 150°C in cast iron vessels. Exothermic reaction sustains the temperature at about 200 to 250°C. The reaction mixture is cooled and treated with cold water to dissolve rare earth sulfates. The solution is then treated with sodium pyrophosphate to precipitate thorium. Cerium is removed next. Treatment with caustic soda solution fohowed by air drying converts the metal to cerium(lV) hydroxide. Treatment with hydrochloric or nitric acid sol-... [Pg.303]


See other pages where Cerium precipitation is mentioned: [Pg.13]    [Pg.539]    [Pg.543]    [Pg.544]    [Pg.370]    [Pg.370]    [Pg.382]    [Pg.131]    [Pg.454]    [Pg.473]    [Pg.321]    [Pg.833]    [Pg.685]    [Pg.5]    [Pg.437]    [Pg.157]    [Pg.185]    [Pg.12]    [Pg.35]    [Pg.109]    [Pg.215]    [Pg.226]    [Pg.181]    [Pg.248]    [Pg.292]    [Pg.445]   
See also in sourсe #XX -- [ Pg.344 , Pg.345 , Pg.349 ]




SEARCH



© 2024 chempedia.info