Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose reactions conditions

The earliest preparation of cellulose acetate is credited to Schiitzenberger in 1865. The method used was to heat the cotton with acetic anhydride in sealed tubes at 130-140°C. The severe reaction conditions led to a white amorphous polymer but the product would have been severely degraded and the process difficult to control. Subsequent studies made by Liebermann, Francimont, Miles, the Bayer Company and by other workers led to techniques for controlled acetylation under less severe conditions. [Pg.621]

The main focus of this account is to review some aspects of the chemistry of cellulose esters. Emphasis is placed on the esterification reaction, carried out under the homogenous reaction conditions (HRC) scheme. Unconventional methods for the synthesis of cellulose derivatives, e.g., esters and ethers... [Pg.106]

At first glance, the HRC scheme appears simple the polymer is activated, dissolved, and then submitted to derivatization. hi a few cases, polymer activation and dissolution is achieved in a single step. This simplicity, however, is deceptive as can be deduced from the following experimental observations In many cases, provided that the ratio of derivatizing agent/AGU employed is stoichiometric, the targeted DS is not achieved the reaction conditions required (especially reaction temperature and time) depend on the structural characteristics of cellulose, especially its DP, purity (in terms of a-cellulose content), and Ic. Therefore, it is relevant to discuss the above-mentioned steps separately in order to understand their relative importance to ester formation, as well as the reasons for dependence of reaction conditions on cellulose structural features. [Pg.109]

Ruiz N (2004) Acylation of Cellulose Under Homogeneous Reaction Conditions. MSc Thesis, University of Sao Paulo, BrazU... [Pg.145]

Heterogeneous catalysts, particularly zeolites, have been found suitable for performing transformations of biomass carbohydrates for the production of fine and specialty chemicals.123 From these catalytic routes, the hydrolysis of abundant biomass saccharides, such as cellulose or sucrose, is of particular interest. The latter disaccharide constitutes one of the main renewable raw materials employed for the production of biobased products, notably food additives and pharmaceuticals.124 Hydrolysis of sucrose leads to a 1 1 mixture of glucose and fructose, termed invert sugar and, depending on the reaction conditions, the subsequent formation of 5-hydroxymethylfurfural (HMF) as a by-product resulting from dehydration of fructose. HMF is a versatile intermediate used in industry, and can be derivatized to yield a number of polymerizable furanoid monomers. In particular, HMF has been used in the manufacture of special phenolic resins.125... [Pg.69]

An 8000-member library of trisamino- and aminooxy-l,3,5-triazines has been prepared by use of highly effective, microwave-assisted nucleophilic substitution of polypropylene (PP) or cellulose membrane-bound monochlorotriazines. The key step relied on the microwave-promoted substitution of the chlorine atom in monochlorotriazines (Scheme 12.7) [35]. Whereas the conventional procedure required relatively harsh conditions such as 80 °C for 5 h or very long reaction times (4 days), all substitution reactions were found to proceed within 6 min, with both amines and solutions of cesium salts of phenols, and use of microwave irradiation in a domestic oven under atmospheric reaction conditions. The reactions were conducted by applying a SPOT-synthesis technique [36] on 18 x 26 cm cellulose membranes leading to a spatially addressed parallel assembly of the desired triazines after cleavage with TFA vapor. This concept was later also extended to other halogenated heterocycles, such as 2,4,6-trichloropyrimidine, 4,6-dichloro-5-nitropyrimidine, and 2,6,8-trichloro-7-methylpurine, and applied to the synthesis of macrocyclic peptidomimetics [37]. [Pg.411]

McKelvey etal. (1959) investigated the reaction of epoxides with cellulose in alkaline conditions, reporting that alkaline cellulose reacted readily once the concentration of sodium hydroxide was sufficiently high. However, no evidence was found of reaction between cotton yarn and cellulose with a range of epoxides under a variety of reaction conditions. It was concluded that the apparent reactivity of cellulose with epoxides was primarily due to alkaline swelling of the cellulose, self-polymerization of the epoxide monomers then occurring within the interior structure of the fibres. It was also noted that the reactivity with phenol OH groups was very low (e.g. only 1 % conversion of ethylene oxide with various phenols). [Pg.90]

Reaction occurs differently since there are two types of hydroxyl groups (as noted earlier), the two ring hydroxyls and the methylene hydroxyl. In the typical formation of esters, such as cellulose acetate, the ring hydroxyl groups are acetylated initially (structure 9.8) prior to the C-6 exocyclic hydroxyl. Under appropriate reaction conditions, reaction continues to almost completion with the esterification of all three hydroxyl groups (structure 9.9). In triacetate products, only small amounts (on the order of 1%) of the hydroxyls remain free, and of these generally about 80% are C-6 hydroxyl. [Pg.269]

Regioselective enzymatic acylation of large, insoluble polysaccharides is still a quite difficult task and therefore it is not surprising that only scant data have been reported up to now, most of them describing reaction outcomes which met with limited success. Nevertheless, enzymatic derivatization of polysaccharides has been performed in nonpolar organic solvents using insoluble polysaccharides with soluble [51] or suspended enzymes [52]. Chemically modified celluloses with either enhanced solubility or more readily accessible hydroxyl groups, like cellulose acetate or hydroxypropyl cellulose, were acylated by CalB, as reported by Sereti and coworkers [53]. However, the same authors failed to modify crystalline cellulose under the same reaction conditions. [Pg.152]

The reaction is able to take place without destroying the fibrous structure of the cellulose. The extent of nitration of the —OH groups is dependent on the reaction conditions, particularly the composition of the acid, the time and temperature of nitration. [Pg.127]

In contrast to these findings, a glucuronoarabinoxylan isolated from oat coleoptiles did not bind to cellulose in vitro under reaction conditions that allowed other heteroxylans to bind.53 This oat heteroxylan had, however, a high percentage of arabinosyl side chains that would be likely to hinder binding sterically. A similar inability to bind to cellulose is exhibited by an arabinose-rich arabinoxylan isolated from cultured, barley-aleurone cell-walls.61... [Pg.314]

Initial preparative work with oxynitrilases in neutral aqueous solution [517, 518] was hampered by the fact that under these reaction conditions the enzymatic addition has to compete with a spontaneous chemical reaction which limits enantioselectivity. Major improvements in optical purity of cyanohydrins were achieved by conducting the addition under acidic conditions to suppress the uncatalyzed side reaction [519], or by switching to a water immiscible organic solvent as the reaction medium [520], preferably diisopropyl ether. For the latter case, the enzymes are readily immobilized by physical adsorption onto cellulose. A continuous process has been developed for chiral cyanohydrin synthesis using an enzyme membrane reactor [61]. Acetone cyanhydrin can replace the highly toxic hydrocyanic acid as the cyanide source [521], Inexpensive defatted almond meal has been found to be a convenient substitute for the purified (R)-oxynitrilase without sacrificing enantioselectivity [522-524], Similarly, lyophilized and powered Sorghum bicolor shoots have been successfully tested as an alternative source for the purified (S)-oxynitrilase [525],... [Pg.172]

Celluloses oxidized to an aldehyde at C6 are found for instance as intermediates of the TEMPO oxidation [50]. Depending on the reaction conditions a large number of such groups may survive in the final products, the poly-glucuronic acids, and also in partially TEMPO-oxidized pulps materials it is highly likely that a large number of carbonyl groups are present as C6-aldehyde. [Pg.9]

The reaction conditions for FDAM labeling were optimized for cellulose to fit into the usual activation protocol prior to dissolution in DMAc/LiCl (9%). FDAM can be prepared in the GPC eluant DMAc from 9f/-fluorcn-2-yl-carboxaldehyde via its hydrazone by oxidation with excess manganese dioxide [78]. [Pg.27]


See other pages where Cellulose reactions conditions is mentioned: [Pg.75]    [Pg.314]    [Pg.625]    [Pg.239]    [Pg.103]    [Pg.110]    [Pg.110]    [Pg.111]    [Pg.127]    [Pg.129]    [Pg.134]    [Pg.135]    [Pg.109]    [Pg.144]    [Pg.39]    [Pg.139]    [Pg.446]    [Pg.611]    [Pg.143]    [Pg.68]    [Pg.356]    [Pg.256]    [Pg.257]    [Pg.395]    [Pg.213]    [Pg.214]    [Pg.72]    [Pg.364]    [Pg.227]    [Pg.433]    [Pg.32]    [Pg.32]    [Pg.116]    [Pg.122]    [Pg.75]    [Pg.342]    [Pg.120]   


SEARCH



Cellulose reactions

Reaction condition

© 2024 chempedia.info