Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cell Penetration Polymers

Although a few mechanisms have so far been proposed to explain the antimicrobial properties exhibited by proanthocyanidins (e.g., inhibition of extracellular enzymes) [86], Jones et al. [83] postulated that their ability to bind bacterial cell coat polymers and their abihty to inhibit cell-associated proteolysis might be considered responsible for the observed activity (Table 1). Accordingly, despite the formation of complexes with cell coat polymers, proanthocyanidins penetrated to the cell wall in sufficient concentration to react with one or more ultra-structural components and to selectively inhibit cell wall synthesis. Decreased proteolysis in these strains may also reflect a reduction of the export of proteases from the cell in the presence of proanthocyanidins [83]. [Pg.254]

In certain instances, however, factors other than the cell wall polymers of the phellem may be important in the protection provided by the secondary surface. Rosellinia desmazieresii inoculated in a food base onto the underground stems of a resistant Salix repens hybrid (5. x Friesiana) exhibited greatly reduced epiphytic growth and cord formation compared with inoculations onto susceptible S. repens itself. Attempted penetration was not observed on the resistant hybrid (30). This behaviour suggests that diffusible chemical inhibitors at the stem surface may be important in resistance to this pathogen, which has a demonstrated ability to degrade suberin and penetrate the surface periderm (30). [Pg.349]

Somewhat closer to the designation of a microscopic model are those diffusion theories which model the transport processes by stochastic rate equations. In the most simple of these models an unique transition rate of penetrant molecules between smaller cells of the same energy is determined as function of gross thermodynamic properties and molecular structure characteristics of the penetrant polymer system. Unfortunately, until now the diffusion models developed on this basis also require a number of adjustable parameters without precise physical meaning. Moreover, the problem of these later models is that in order to predict the absolute value of the diffusion coefficient at least a most probable average length of the elementary diffusion jump must be known. But in the framework of this type of microscopic model, it is not possible to determine this parameter from first principles . [Pg.140]

Chemical modification will be defined for this chapter as any chemical reaction between some reactive part of a wood cell wall component and a simple single chemical reagent, with or without catalyst, that forms a covalent bond between the two components. This excludes in situ polymerizations of monomers in the lumen structure of the wood and those reactions that result in cell wall-penetrating polymer systems that do not result in any cell wall attachment. It is well known that lumen-filling polymer treatment results in large improvements in mechanical properties, but these are mainly a result of the properties of the new polymer introduced [ 1 ]. [Pg.295]

The mechanism of adhesion is also an important factor in failure analysis in composites [31]. Some adhesives work due to a physical entanglement of the resin into the wood structure whereas others require a free hydroxyl group on one of the cell wall polymers to participate in a chemical reaction with the resin. Substitution of hydroxyl groups was shown to decrease adhesion between chemically modified veneers due to the loss of hydroxyl functionality [32]. Resins that are water-soluble and depend on a hydrophilic substrate for penetration will be less efficient in chemically modified wood due to the decreased hydrophilic nature of the celt wall resulting from modification [33]. [Pg.304]

To improve dimensional stabiUty, low molecular weight chemicals are used that penetrate the cell walls and either bond to the cell wall polymers or polymerize in the cell wall. Improvements in dimensional stabiUty are measured by antishrink efficiency (ASE) ... [Pg.330]

Techniques to produce multiscale biomaterial scaffolds with designer geometries are the need of the hour to provide improved biomimetic properties for functional tissue replacements. While micrometer fibers generate an open pore stnicture, nanofibers support cell adhesion and facilitate cell-cell interactions. This was further proven by cell penetration studies, which showed superior ingrowth of cells into hierarchical structures. Mixed bimodal scaffolds of two different polymers are another promising approach, because they exhibit hierarchical pore/ surface systems and combine the beneficial properties of both polymers at two different scales. Vaiious 3D micro- and nanoscale multiscale scaffolds have been fabricated through various techniques and were found to have the potential to essentially recreate natural bone, cardiac, neural, and vascular tissues. [Pg.18]

The control of inverse transition temperatures by sequence manipulation and biocompatibility of ELPs make them useful polymers for drug delivery. Cultured cancer cells and solid tumors in animal models uptake fluorescently labeled ELPs in a thermally responsive manner (48,49). Two major limitations in cancer therapy have been the inability of therapeutic molecules to cross the cell membrane and the target-specificity of the compounds. To overcome these limitations cell-penetrating, peptides (CPP) have been fused with ELPs (CPP-ELP) to develop thermally responsive therapeutics with the ability to translocate the cell membrane (Figure 3B). CPPs can assist in the transportation of hydrophilic compounds (small molecules, oglionucleotides and peptides) across the cell membrane (50). Fusing ELPs to a variety of CPPs have revealed that the peptide sequence of penetratin demonstrates the most efficient cellular uptake (51). Further, these CPP-ELPs have been fused to a c-Myc inhibitory peptide known to target and inhibit cancer. As proof of principle, these fusion proteins inhibits proliferation of cultured cancer cell lines in a thermally responsive manner (52). [Pg.46]

There was little overall effect of pore size on the maximal depth of cell penetration into the polymer at 35 days (approximately 1.4 mm). Cell movement into all the PHPs tested progressed with time, but the rate was notably quicker with the 100- tm pore size polymer in comparison to the 40- and 60- tm pore size polymers. [Pg.190]

We have also provided evidence that the behavior of microorganisms in confined micro-environment is substantially different and that their desired metabolic activities can be maximized through the modification of the surface characteristics as well as the size of the pores. These characteristics can therefore be utilized in BI as well as in the enhancement of cell penetration and cell proliferation in tissue engineering and when such polymers are grafted. Micro-fabrication technique has also been used in the development of highly porous catalysts with arterial channels feeding nano-pores which provide an extended surface area. Such materials can be used as micro-reactors as well as catalysts. [Pg.194]

Abdellaoui, K., Boustta, M., Morjani, H., Manfait, M. and Vert, M., 1998, Metabolite-derived artificial polymers designed for drug targeting, cell penetration and bioresorption, Europ. J. Pharm. Sci. 6 61-73... [Pg.80]

Ring-opening metathesis polymerization provides a platform on which to create living polymers with varied biologically active functionalities.These polymers have been used both for antimicrobial and cell-penetrating peptide mimic purposes. The first class of ROMP polymers made used an imide-functionalized oxanorbornene structure. llker... [Pg.308]


See other pages where Cell Penetration Polymers is mentioned: [Pg.195]    [Pg.195]    [Pg.156]    [Pg.732]    [Pg.114]    [Pg.38]    [Pg.40]    [Pg.68]    [Pg.155]    [Pg.87]    [Pg.290]    [Pg.138]    [Pg.275]    [Pg.459]    [Pg.164]    [Pg.308]    [Pg.175]    [Pg.6]    [Pg.84]    [Pg.199]    [Pg.48]    [Pg.1160]    [Pg.417]    [Pg.188]    [Pg.192]    [Pg.225]    [Pg.1273]    [Pg.83]    [Pg.268]    [Pg.310]    [Pg.22]    [Pg.279]    [Pg.307]    [Pg.308]    [Pg.181]    [Pg.278]   


SEARCH



Penetrant polymers

Polymer cells

Polymer penetration

© 2024 chempedia.info