Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impressed current cathodic protection

As discussed earlier, there are two forms of cathodic protection, impressed current and galvanic. The impressed current system has been described earlier and is the system with the longest history of application to atmospherically exposed reinforced concrete structures. An alternative method... [Pg.143]

Cathodic protection is probably the most important of all approaches to corrosion control. Using an externally applied electric current, corrosion is reduced essentially to zero. A metal surface that is cathodically protected can be maintained in a corrosive environment without deterioration for an indefinite time. There are two types of cathodic protection impressed current cathodic protection (ICCP) and sacrificial anode cathodic protection (SACP), also known as galvanic cathodic protection. [Pg.251]

Cathodic protection. Impressed current cathodic protection system has been... [Pg.220]

The major stray-current corrosion problems now result in cathodic protection systems. Current from an impressed-current cathodic protection system will pass through the metal of a neighboring pipeline at some distance before it returns to the protected surface. Increased anodic corrosion is frequently localized on the pipe at the zone where the current leaves the pipe back to the protected steel tank. [Pg.353]

Cathodic Protection Systems. Metal anodes using either platinum [7440-06 ] metal or precious metal oxide coatings on titanium, niobium [7440-03-17, or tantalum [7440-25-7] substrates are extensively used for impressed current cathodic protection systems. A prime appHcation is the use of platinum-coated titanium anodes for protection of the hulls of marine vessels. The controUed feature of these systems has created an attractive alternative... [Pg.119]

Niobium is used as a substrate for platinum in impressed-current cathodic protection anodes because of its high anodic breakdown potential (100 V in seawater), good mechanical properties, good electrical conductivity, and the formation of an adherent passive oxide film when it is anodized. Other uses for niobium metal are in vacuum tubes, high pressure sodium vapor lamps, and in the manufacture of catalysts. [Pg.26]

The low cost, light weight, and exceUent electrical conductivity of graphite anodes have made this impressed current protection system valuable for cathodic protection of pipelines, storage vessels, process equipment, and also for weU casings both on- and offshore. [Pg.521]

It is little known that Thomas Alva Edison tried to achieve cathodic protection of ships with impressed current in 1890 however, the sources of current and anodic materials available to him were inadequate. In 1902, K. Cohen achieved practical cathodic protection using impressed direct current. The manager of urban works at... [Pg.12]

To protect steam boilers and their tubes from corrosion, E. Cumberland used cathodic impressed current in America in 1905. Figure 1-10 has been taken from the corresponding German patent [35]. In 1924 several locomotives of the Chicago Railroad Company were provided with cathodic protection to prevent boiler corrosion. Where previously the heating tubes of steam boilers had to be renewed every 9 months, the costs fell sharply after the introduction of the electrolytic... [Pg.13]

The first anode installation for the cathodic protection of gas pipelines in New Orleans consisted of a 5-m-long horizontal cast-iron tube. Later old tramway lines were used. Since in downtown New Orleans there was no suitable place to install impressed current anodes and to avoid detrimental effects on other pipelines, Kuhn recommended the use of deep anodes which were first installed in 1952 at a depth... [Pg.17]

In the cathodic protection of storage tanks, potentials should be measured in at least three places, i.e., at each end and at the top of the cover [16]. Widely different polarized areas arise due to the small distance which is normally the case between the impressed current anodes and the tank. Since such tanks are often buried under asphalt, it is recommended that permanent reference electrodes or fixed measuring points (plastic tubes under valve boxes) be installed. These should be located in areas not easily accessible to the cathodic protection current, for example between two tanks or between the tank wall and foundations. Since storage tanks usually have several anodes located near the tank, equalizing currents can flow between the differently loaded anodes on switching off the protection system and thus falsify the potential measurement. In such cases the anodes should be separated. [Pg.100]

Heterogeneous surface areas consist of anodic regions at corrosion cells (see Section 2.2.4.2) and objects to be protected which have damaged coating. Local concentrations of the current density develop in the area of a defect and can be determined by measurements of field strength. These occur at the anode in a corrosion cell in the case of free corrosion or at a holiday in a coated object in the case of impressed current polarization (e.g., cathodic protection). Such methods are of general interest in ascertaining the corrosion behavior of metallic construction units... [Pg.123]

The current needed for cathodic protection by impressed current is supplied from rectifier units. In Germany, the public electricity supply grid is so extensive that the CP transformer-rectifier (T-R) can be connected to it in most cases. Solar cells, thermogenerators or, for low protection currents, batteries, are only used as a source of current in exceptional cases (e.g., in sparsely populated areas) where there is no public electricity supply. Figure 8-1 shows the construction of a cathodic impressed current protection station for a pipeline. Housing, design and circuitry of the rectifier are described in this chapter. Chapter 7 gives information on impressed current anodes. [Pg.225]

Fig. 8-1 Construction of an impressed current cathodic protection station. Fig. 8-1 Construction of an impressed current cathodic protection station.
Impressed Current Equipment and Transformer-Rectifiers 239 Table 8-2 Troubleshooting at cathodic protection stations... [Pg.239]

Cathodic protection with magnesium anodes can be just as economical as impressed current anode assemblies for pipelines only a few kilometers in length and with protection current densities below 10 xA m" e.g., in isolated stretches of new pipeline in old networks and steel distribution or service pipes. In this case, several anodes would be connected to the pipeline in a group at test points. The distance from the pipeline is about 1 to 3 m. The measurement of the off potential... [Pg.278]

According to Ref. 32, the functioning of impressed current cathodic protection stations should be monitored every 2 months, and the stray current protection station every 1 month. If protection installations are provided with measuring instruments for current and potential, this supervision can be carried out by operating staff, so that the readings are recorded and sent to the technical department for... [Pg.287]

Fig. 11-4 Local cathodic protection of a tank farm with impressed current. Fig. 11-4 Local cathodic protection of a tank farm with impressed current.
Structures or pits for water lines are mostly of steel-reinforced concrete. At the wall entrance, contact can easily arise between the pipeline and the reinforcement. In the immediate vicinity of the pit, insufficient lowering of the potential occurs despite the cathodic protection of the pipeline. Figure 12-7 shows that voltage cones caused by equalizing currents are present up to a few meters from the shaft. With protection current densities of 5 mA mr for the concrete surfaces, even for a small pit of 150 m surface area, 0.75 A is necessary. A larger distribution pit of 500 m requires 2.5 A. Such large protection currents can only be obtained with additional impressed current anodes which are installed in the immediate vicinity of the pipe entry into the concrete. The local cathodic protection is a necessary completion of the conventional protection of the pipeline, which would otherwise be lacking in the pit. [Pg.317]

Cathodic Protection with Impressed Current Anodes... [Pg.329]

Cathodic protection with impressed current anodes is used predominantly with cables or steel casing in which the cable is inserted, outside built-up areas where it is possible to build large anode installations without damaging interference with other lines. In densely populated areas, protection with impressed current anodes is often only possible with deep anodes, with surface anodes or locally at individual problem points (local cathodic protection, see Chapter 12). [Pg.329]

The difficulties of such operations on the research platform Nordsee are described in Ref. 9. The Murchison platform was provided with a combination of impressed current protection and galvanic anodes because there was a limit to the load to be transported [12]. The anodes for platforms are installed and provided with cables at the yard. They are installed with redundancy and excess capacity so that no repairs are necessary if there is a breakdown. The lower part of the platform up to the splash zone is usually placed in position in the designated location at least 1 year before the erection of the deck structure so that impressed current protection cannot initially be put in operation. This requires cathodic protection with galvanic anodes for this period. This also means that the impressed current protection is more expensive than the galvanic anodes. [Pg.375]

Fig. 16-9 Cathodic protection of a steel piling with impressed current. Fig. 16-9 Cathodic protection of a steel piling with impressed current.
Today loading piers are mostly cathodically protected with impressed current. At moorings for tankers, cathodic protection rectifiers are installed on extinguisher bridges as far as possible from the hazardous area. Otherwise, they must be of an explosion-proof type. [Pg.382]


See other pages where Impressed current cathodic protection is mentioned: [Pg.396]    [Pg.500]    [Pg.396]    [Pg.500]    [Pg.521]    [Pg.278]    [Pg.394]    [Pg.17]    [Pg.18]    [Pg.19]    [Pg.40]    [Pg.236]    [Pg.243]    [Pg.256]    [Pg.280]    [Pg.280]    [Pg.282]    [Pg.284]    [Pg.285]    [Pg.292]    [Pg.310]    [Pg.317]    [Pg.343]    [Pg.348]    [Pg.374]    [Pg.383]   
See also in sourсe #XX -- [ Pg.372 ]

See also in sourсe #XX -- [ Pg.467 ]




SEARCH



Bridges impressed-current cathodic protection

Cathodic Protection with Impressed Current Anodes

Cathodic current

Cathodic protection

Cathodic protection by impressed current

Cathodic protection continued impressed-current

Cathodic protection with impressed current

Cathodically protective

Impressed current

Impressed current cathodic

Impressed current cathodic protection ICCP)

Impressed current cathodic protection consumable anodes

Impressed current protection

Impressed current systems cathodic protection system

The components of an impressed current cathodic protection system

© 2024 chempedia.info