Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts coordinated catalyst

Low- and high-density polyethylene, polypropene, and polymers of other alkene (olefin) monomers constitute the polyolefin family of polymers. All except LDPE are produced by coordination catalysts. Coordination catalysts are also used to produce linear low-density polyethylene (LLDPE), which is essentially equivalent to LDPE in structure, properties, and applications (Sec. 8-1 lc). The production figures given above for LDPE do not include LLDPE. The production of LLDPE now exceeds that of LDPE, with about 10 billion pounds produced in 2001 in the United States. (Copolymers constitute about one-quarter of all low density polyethylenes see Sec. 6-8b.)... [Pg.302]

Asymmetric allylation of carbon nucleophiles has been carried out extensively using Pd catalysts coordinated by various chiral phosphine ligands and even with nitrogen ligands, and ee > 90% has been achieved in several cases. However, in most cases, a high ee has been achieved only with the l,3-diaryl-substitiitcd allylic compounds 217, and the synthetic usefulness of the reaction is limited. Therefore, only references are cited[24,133]. [Pg.319]

The (E)-a-alkyl-/5-silylacrylate 22 is prepared by regio- and stereoselective car-bony lation of the trimethylsilylalkyne 21 using a Pd catalyst coordinated by SnClj and dppf[20]. [Pg.475]

Cycloaddition of COj with the dimethyl-substituted methylenecyclopropane 75 proceeds smoothly above 100 °C under pressure, yielding the five-membered ring lactone 76. The regiocheraistry of this reaction is different from that of above-mentioned diphenyl-substituted methylenecyclopropanes 66 and 67[61], This allylic lactone 76 is another source of trimethylenemethane when it is treated with Pd(0) catalyst coordinated by dppe in refluxing toluene to generate 77, and its reaction with aldehydes or ketones affords the 3-methylenetetrahy-drofuran derivative 78 as expected for this intermediate. Also, the lactone 76 reacts with a, /3-unsaturated carbonyl compounds. The reaction of coumarin (79) with 76 to give the chroman-2-one derivative 80 is an example[62]. [Pg.522]

Coolwater Coomassie Brilliant Blue Cooperite Cooper pairs Coordination Coordination catalysts... [Pg.247]

Twelve-membered rings have been obtained using coordination catalysts. The transJmns,ds-cyc. ododec2Lti ien.e has been prepared with a tetrabutyl titanate—diethylalurninum chloride catalyst (48,49) and with a chromium-based system (50). The trans,trans,trans-isom.e-i. has been prepared with a nickel system. [Pg.465]

Al—Ti Catalyst for cis-l,4-PoIyisoprene. Of the many catalysts that polymerize isoprene, four have attained commercial importance. One is a coordination catalyst based on an aluminum alkyl and a vanadium salt which produces /n j -l,4-polyisoprene. A second is a lithium alkyl which produces 90% i7j -l,4-polyisoprene. Very high (99%) i7j -l,4-polyisoprene is produced with coordination catalysts consisting of a combination of titanium tetrachloride, TiCl, plus a trialkyl aluminum, R Al, or a combination of TiCl with an alane (aluminum hydride derivative) (86—88). [Pg.467]

Polypropylene. One of the most important appHcations of propylene is as a monomer for the production of polypropylene. Propylene is polymerized by Ziegler-Natta coordination catalysts (92,93). Polymerization is carried out either in the Hquid phase where the polymer forms a slurry of particles, or in the gas phase where the polymer forms dry soHd particles. Propylene polymerization is an exothermic reaction (94). [Pg.128]

High Density Polyethylene. High density polyethylene (HDPE), 0.94—0.97 g/cm, is a thermoplastic prepared commercially by two catalytic methods. In one, coordination catalysts are prepared from an aluminum alkyl and titanium tetrachloride in heptane. The other method uses metal oxide catalysts supported on a carrier (see Catalysis). [Pg.327]

These appHcations are mosdy examples of homogeneous catalysis. Coordination catalysts that are attached to polymers via phosphine, siloxy, or other side chains have also shown promise. The catalytic specificity is often modified by such immobilization. Metal enzymes are, from this point of view, anchored coordination catalysts immobilized by the protein chains. Even multistep syntheses are possible using alternating catalysts along polymer chains. Other polynuclear coordination species, such as the homopoly and heteropoly ions, also have appHcations in reaction catalysis. [Pg.172]

Free-radical copolymerizations have been performed ia bulb (comonomers without solvent), solution (comonomers with solvent), suspension (comonomer droplets suspended ia water), and emulsion (comonomer emulsified ia water). On the other hand, most ionic and coordination copolymerizations have been carried out either ia bulb or solution, because water acts as a poison for many ionic and coordination catalysts. Similarly, few condensation copolymerizations iavolve emulsion or suspension processes. The foUowiag reactions exemplify the various copolymerization mechanisms. [Pg.179]

Linear polyethylene (high density) was introduced in the late 1950s, with the development of coordination catalysts. Chlorosulfonation of these base resins gave products that were superior to the eadier, low density types in both chemical resistance and mechanical properties and with distinct advantages in mbber processibiUty (6,7). [Pg.490]

CSM products may be divided into three groups depending on the type of precursor resin low density (LDPE), high density (HDPE), and linear low density (LLDPE). LDPE is made by a high pressure free-radical process, while HDPE and LLDPE are made via low pressure, metal coordination catalyst processes (12) (see Olefin polymers). [Pg.490]

First, dehydrogenative bonding of acetylene to the catalyst surface will free hydrogen and produce moieties bonded to the catalyst coordination sites. These units are assumed to be the building blocks for the tubules. [Pg.97]

Third, the units are inserted between the catalyst coordination sites and the growing nanotubule (Fig. 14). The last unit introduced will still be bonded to the catalyst coordination sites. From the catalyst surface, a new C2 unit will again displace the previous one, which becomes part of the growing tubule, and so on. [Pg.97]

For the sake of clarity, ten coordination sites are drawn a little further away from the surface of the particle in Fig. 15(a)-(c). These sites are real surface sites and the formal link is shown by a solid line. In this way the different C2 units are easily distinguished in the figure and the formation of six-membered rings is obvious. The planar tubule representations of Fig. 15(a )-(c ) are equivalent to those in Fig. 15(a)-(c), respectively. The former figures allow a better understanding of tubule growth. Arriving C, units are first coordinated to the catalyst coordination... [Pg.97]

Fig. 15. Growth of a (5ii,5n) tubule on the catalyst surface, illustrated by that of the (5,5) tubule. The central grey circle represents the catalyst particle with 10 coordination sites, and the small grey circles represent the other 10 catalyst coordination sites. The normal and bold lines represent single and double bonds, respectively, while coordinative bonds are represented by dotted lines [(a), (b) and (c)] (a ), (b ) and (c ) are the corresponding planar representations. Fig. 15. Growth of a (5ii,5n) tubule on the catalyst surface, illustrated by that of the (5,5) tubule. The central grey circle represents the catalyst particle with 10 coordination sites, and the small grey circles represent the other 10 catalyst coordination sites. The normal and bold lines represent single and double bonds, respectively, while coordinative bonds are represented by dotted lines [(a), (b) and (c)] (a ), (b ) and (c ) are the corresponding planar representations.
Growth mechanism of a (9n,0) tubule, over 24n coordination sites of the catalyst. The growth of a general (9 ,0) tubule on the catalyst surface is illustrated by that of the (9,0) tubule in Fig. 16 which shows the unsaturated end of a (9,0) tubule in a planar representation. At that end, the carbons bearing a vacant bond are coordinatively bonded to the catalyst (grey circles) or to a growing cis-polyacetylene chain (oblique bold lines in Fig. 16). Tlie vacant bonds of the six c/s-polyacetylene chains involved are taken to be coordinatively bonded to the catalyst [Fig. 16(b)]. These polyacetylene chains are continuously extruded from the catalyst particle where they are formed by polymerization of C2 units assisted by the catalyst coordination sites. Note that in order to reduce the number of representations of important steps, Fig. 16(b) includes nine new Cj units with respect to Fig. 16(a). [Pg.99]

The 12 catalyst coordination sites — drawn further away from the surface of the particle (closer to the tubule) — are acting in pairs, each pair being always coordinatively bonded to one carbon of an inserted (F) or of a to-be-inserted (2 ) Cj unit and to two other carbons which are members of two neighbouring cis-polyacetylene chains (3°). It should be emphasized that, as against the (5n,5n) tubule growth, the C2 units extruded from the catalyst particle are positioned in this case parallel to the tubule axis before their insertion. [Pg.99]

When the catalyst coordinates to the pyrazoline nitrogen and carbonyl oxygen at the step of 1-pyrazoline formation, desilylation or deprotonation takes place at the same position to give either Na or Nb, respectively. On the other hand, when the catalyst coordinates to the two carbonyl oxygens, the methine hydrogen derived from the acceptor molecule is deprotonated to give Nc. In the reaction using a Le-... [Pg.280]

When polymerizing dienes for synthetic rubber production, coordination catalysts are used to direct the reaction to yield predominantly 1,4-addition polymers. Chapter 11 discusses addition polymerization. The following reviews some of the physical and chemical properties of butadiene and isoprene. [Pg.36]

Ethylene reacts by addition to many inexpensive reagents such as water, chlorine, hydrogen chloride, and oxygen to produce valuable chemicals. It can be initiated by free radicals or by coordination catalysts to produce polyethylene, the largest-volume thermoplastic polymer. It can also be copolymerized with other olefins producing polymers with improved properties. Eor example, when ethylene is polymerized with propylene, a thermoplastic elastomer is obtained. Eigure 7-1 illustrates the most important chemicals based on ethylene. [Pg.188]

A monomer is a reactive molecule that has at least one functional group (e.g. -OH, -COOH, -NH2, -C=C-). Monomers may add to themselves as in the case of ethylene or may react with other monomers having different functionalities. A monomer initiated or catalyzed with a specific catalyst polymerizes and forms a macromolecule—a polymer. For example, ethylene polymerized in presence of a coordination catalyst produces a linear homopolymer (linear polyethylene) ... [Pg.302]

Polymerizations catalyzed with coordination compounds are becoming more important for obtaining polymers with special properties (linear and stereospecific). The first linear polyethylene polymer was prepared from a mixture of triethylaluminum and titanium tetrachloride (Ziegler catalyst) in the early 1950s. Later, Natta synthesized a stereoregular polypropylene with a Ziegler-type catalyst. These catalyst combinations are now called Zieglar-Natta catalysts. [Pg.309]

A new generation coordination catalysts are metallocenes. The chiral form of metallocene produces isotactic polypropylene, whereas the achiral form produces atactic polypropylene. As the ligands rotate, the catalyst produces alternating blocks of isotactic and atactic polymer much like a miniature sewing machine which switches back and forth between two different kinds of stitches. [Pg.312]

The ring opening of cycloolefins is also possible with certain coordination catalysts. This simplified example shows cyclopentene undergoing a first-step formation of the dimer cyclodecadiene, and then incorporating additional cyclopentene monomer units to produce the solid, rubbery polypentamer ... [Pg.315]

Polystyrene (PS) is the fourth big-volume thermoplastic. Styrene can be polymerized alone or copolymerized with other monomers. It can be polymerized by free radical initiators or using coordination catalysts. Recent work using group 4 metallocene combined with methylalumi-noxane produce stereoregular polymer. When homogeneous titanium catalyst is used, the polymer was predominantly syndiotactic. The heterogeneous titanium catalyst gave predominantly the isotactic. Copolymers with butadiene in a ratio of approximately 1 3 produces SBR, the most important synthetic rubber. [Pg.334]

Butadiene could be polymerized using free radical initiators or ionic or coordination catalysts. When butadiene is polymerized in emulsion using a free radical initiator such as cumene hydroperoxide, a random polymer is obtained with three isomeric configurations, the 1,4-addition configuration dominating ... [Pg.352]

Polymerization of butadiene using anionic initiators (alkyllithium) in a nonpolar solvent produces a polymer with a high cis configuration. A high cis-polybutadiene is also obtained when coordination catalysts are used. [Pg.352]

Currently, more SBR is produced by copolymerizing the two monomers with anionic or coordination catalysts. The formed copolymer has better mechanical properties and a narrower molecular weight distribution. A random copolymer with ordered sequence can also be made in solution using butyllithium, provided that the two monomers are charged slowly. Block copolymers of butadiene and styrene may be produced in solution using coordination or anionic catalysts. Butadiene polymerizes first until it is consumed, then styrene starts to polymerize. SBR produced by coordinaton catalysts has better tensile strength than that produced by free radical initiators. [Pg.353]

Stereoregular polyisoprene is obtained when Zieglar-Natta catalysts or anionic initiators are used. The most important coordination catalyst is a-TiCls cocatalyzed with aluminum alkyls. The polymerization rate and cis... [Pg.354]

C—X, Cf, X- and C+ fX (see Fig. 2), the solvation energy increasing the driving force of these dissociations. It is possible that a coordination catalyst is not active in the C—X state but only in one or other of the ionized states. Such behavior blurs the distinction between ionic and coordination polymerization. [Pg.162]

In contrast to the fact that cyclic acetals can be polymerized only by cationic initiators, lactones undergo polymerization both cationically and anionically, and therefore a wide variety of initiators including coordinated catalysts can be used. In this section, the polymerization of bicyclic lactones is described, although only a limited number of papers on this subject have been published. [Pg.63]


See other pages where Catalysts coordinated catalyst is mentioned: [Pg.46]    [Pg.1083]    [Pg.561]    [Pg.465]    [Pg.466]    [Pg.467]    [Pg.180]    [Pg.349]    [Pg.352]    [Pg.327]    [Pg.97]    [Pg.98]    [Pg.99]    [Pg.301]    [Pg.335]    [Pg.161]    [Pg.162]    [Pg.85]    [Pg.95]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



Catalyst stereoelective coordination

Catalyst stereoselective coordination

Catalysts lanthanide coordination type

Catalysts, anionic coordinative

Catalysts, anionic coordinative Ziegler-Natta

Catalysts, anionic coordinative metallocenes

Catalysts, copolymerization coordination

Cobalt catalysts coordination polymers

Complex coordination catalysts

Cooling system Coordinative catalysts

Coordinated template catalysts

Coordination Catalysts 1 Polymerisation with Heterogeneous Ziegler-Natta

Coordination catalyst types

Coordination catalysts

Coordination catalysts stereospecific chain polymerization

Coordination catalysts, ring-opening

Coordination polymerization Phillips catalysts

Coordination polymerization Ziegler-Natta catalysts

Coordination polymerization catalysts

Coordination polymerization late transition metal catalysts

Coordination polymerization single-site catalysts

Copolymerization with coordination catalysts

Electrochemistry coordination complex catalysts

Heterocyclic monomers coordination catalysts

Heterogeneous coordination catalyst

Hydroformylation catalysts, selective coordinative bonding

Hydrogen coordination complex catalysts

Hydrolysis coordinated water catalyst

In-situ Polymerization of Olefins with Coordination Catalysts Supported on Clays

Isomerization Polymerizations with Coordination Catalysts

Metal Coordination Sites in Heterogeneous Catalysts

Monomers and Catalysts - Coordination

Olefin Polymerization with Coordination Catalysts

Osmium catalysts coordination complexes

Other Reactions Catalyzed by Coordinated Template Catalysts

Oxygen coordination complex catalysts

Palladium catalysts coordination polymers

Polarography coordination complex catalysts

Polymerization Mechanism with Coordination Catalysts

Polymerizations with Coordination Catalysts

Rare-earth coordination catalysts

Ruthenium catalysts coordination complexes

Water coordinated catalyst

Water coordination complex catalysts

Ziegler-Natta coordination catalysts

© 2024 chempedia.info