Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water coordination complex catalysts

Earlandite structure, 849 Electrical conductivity metal complexes, 133 tetracyanoplatinates anion-deficient salts, 136 Electrical properties metal complexes, 133-154 Electrocatalysis, 28 Electrochemical cells, 1 Electrochemistry, 1-33 hydrogen or oxygen production from water coordination complex catalysts, 532 mineral processing, 831 reduction, 831 Electrodeposi (ion of metals, 1-15 mineral processing difficulty, 831 Electrodes clay modified, 23 ferrocene modified, 20 nation coated, 15 polymers on, 16 polyvinylferrocene coated, 19 poly(4-vinylpyridine) coated, 17 redox centres, 17 Prussian blue modified, 21 surface modified, 15-31 Electrolysis... [Pg.7191]

Direct interaction of water molecules at the metal center can lead to a water-soluble complex. As will be shown, addition of organic moieties to such water-coordinated complexes affords more labile water molecules. This in turn leads to potential active sites for substrate binding in the corresponding catalysts. [Pg.72]

Proteins are water-soluble biopolymers with a huge number of potential donor atoms and coordination sites which could make them useful carriers of metal complex catalysts. Indeed, a few successful attempts can be found in the literature [139] but often the interaction of proteins and metal complexes lead to a loss of catalytic activity [140]. This was not the case with human serum albumin (HSA) which formed a stable and active catalytically active complex with [Rh(acac)(CO)2]. In the hydroformylation of 1-octene and styrene the selectivity towards aldehydes was excellent, moreover styrene reacted with high regioselectivity (b/1 = 19). The activity... [Pg.130]

Ford and co-workers have also recently developed a homogeneous catalyst system for the water-gas shift reaction (95). Their system consists of ruthenium carbonyl, Ru3(CO)12, in an ethoxyethanol solvent containing KOH and H20 under a CD atmosphere. Experiments have been conducted from 100-120°C. The identity of the H2 and CD2 products has been confirmed, and catalysis by both metal complex and base has been verified since the total amount of H2 and COz produced exceeds the initial amounts of both ruthenium carbonyl and KOH. The authors point out that catalysis by base in this system depends on the instability of KHC03 in ethoxyethanol solution under the reaction conditions (95). Normally the hydroxide is consumed stoichiometrically to produce carbonate, and this represents a major reason why a water-gas shift catalyst system has not been developed previously under basic conditions. As has been noted above, coordinated carbonyl does not have to be greatly activated in order for it to undergo attack by the strongly nucleophilic hydroxide ion. Because of the instability of KHC03... [Pg.116]

Protonation of a carbonyl oxygen rather than the metal may be encouraged in this case by the high coordination number of vanadium. This would then promote halide attack on the carbonyl carbon to yield an intermediate hydroxyhalocarbene, which reacts further to yield the indicated products. This system represents a potential photoassisted water-gas shift catalyst system since H3V(CO)3(diars) upon photolysis with a mercury vapor lamp yields H2, and in the presence of CO regenerates the starting complex HV(CO)4(diars). The feasibility of coupling these two reactions in the same reaction solution remains to be demonstrated. [Pg.118]

COORDINATION COMPLEXES AS CATALYSTS FOR THE ELECTROCHEMICAL PRODUCTION OF HYDROGEN OR OXYGEN FROM WATER... [Pg.532]

Crystal structure of 60 revealed that the complex existed as a dimeric species where the two chromium centers are bridged through the indane oxygen and each chromium metal bears one molecule of water (Figure 17.6). It was therefore proposed, as for the inverse electron-demand hetero Diels-Alder reaction, that the barium oxide desiccant removed one molecule of bound water from the catalyst dimer, which opened one coordination site for binding of the substrate carbonyl.26... [Pg.333]

The coordinate type catalysts are also effective for thiirane polymerizations. The types of systems used are also similar. Thus diethylzinc and in particular diethylzinc/water mixtures have been studied [44]. Other studies made using triethylaluminium and diethylcadmium indicated that these metal alkyls all behave similarly. The reactions seem to be rather complex, and, as also was the case with the epoxides, no well defined kinetic studies have appeared. The polymers produced are of high molecular weight and are often crystalline. Thus stereospecific polysulphides have been reported. Again the bulk of the studies involve PS. Stereoselective polymerization of racemic monomer has been accomplished [45, 46] using a catalyst prepared from diethylzinc and (+) borneol. The marked difference between PO and PS in their polymer-... [Pg.271]


See other pages where Water coordination complex catalysts is mentioned: [Pg.118]    [Pg.125]    [Pg.140]    [Pg.187]    [Pg.201]    [Pg.7188]    [Pg.7206]    [Pg.7210]    [Pg.118]    [Pg.125]    [Pg.140]    [Pg.187]    [Pg.201]    [Pg.7188]    [Pg.7206]    [Pg.7210]    [Pg.439]    [Pg.128]    [Pg.259]    [Pg.277]    [Pg.45]    [Pg.678]    [Pg.183]    [Pg.479]    [Pg.211]    [Pg.570]    [Pg.118]    [Pg.439]    [Pg.33]    [Pg.148]    [Pg.236]    [Pg.1074]    [Pg.16]    [Pg.608]   
See also in sourсe #XX -- [ Pg.532 ]

See also in sourсe #XX -- [ Pg.532 ]

See also in sourсe #XX -- [ Pg.6 , Pg.532 ]




SEARCH



Catalysts coordinated catalyst

Complex coordination catalysts

Coordinated water

Water catalyst

Water complexes

Water complexity

Water coordination complexes

© 2024 chempedia.info