Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst layer ionomer

Water management is arguably the most critical component of fuel cell operation. The currently available membranes and catalyst layer ionomers require a high water content to maintain proton conductivity. However, the presence... [Pg.31]

Gloaguen E, AndoUatto E, Durand R, Ozil P. 1994. Kinetic-study of electrochemical reactions at catalyst-recast ionomer interfaces from thin active layer modeling. J Appl Electrochem 24 863-869. [Pg.557]

Thomas, X., Ren, S., and Gottesfeld, J., Influence of ionomer content in catalyst layers on direct methanol fuel cell performance, Electrochem. Soc., 146, 4354, 1999. [Pg.93]

Another approach has been developed to fabricate electrodes with loading as low as 0.1 mg Pt/cm (32). The electrode structure was improved by increasing the contact area between the electrolyte and the platinum clusters. The advantages of this approach are that a thinner catalyst layer of 2 to 3 microns and a uniform mix of catalyst and ionomer are produced. For example, a cell with a Pt loading of 0.17 to 0.13 mg/cm has been fabricated. The cell generated 3 A/cm at > 0.4V on pressurized O2 and 0.65 V at 1 A/cm on pressurized air (32,... [Pg.86]

The evaluation of catalysts typically uses two techniques. The first is evaluation as a thin layer on a bulk electrode (e.g., glassy carbon) in dilute liquid electrolyte (e.g., H2 4) either as a static electrode or an RDE. In the study of oxygen reduction, there has been much discussion as to the most appropriate electrolyte to use. In general, dilute perchloric acid (HCIOJ is preferred because of its noncoordinating nature, it is thus closest to the environment foxmd within a FEM catalyst layer with perfluorosulfonic acid ionomer. A possible alternative is trifluoromethylsulfonic acid (CF3SO3H), which mimics perfluorosulfonic acids closely, but there are relatively few studies with this acid. Rotating... [Pg.13]

To overcome these disadvantages, a thin-film CL technique was invented, which remains the most commonly used method in PEM fuel cells. Thin-film catalyst layers were initially used in the early 1990s by Los Alamos National Laboratory [6], Ballard, and Johnson-Matthey [7,8]. A thin-film catalyst layer is prepared from catalyst ink, consisting of uniformly distributed ionomer and catalyst. In these thin-film catalyst layers, the binding material is not PTFE but rather hydrophilic Nafion ionomer, which also provides proton conductive paths for the electrochemical reactions. It has been found that the presence of hydrophobic PTFE in thin catalyst layers was not beneficial to fuel cell performance [9]. [Pg.65]

Typically, Nation ionomer is the predominant additive in the catalyst layer. However, other types of CLs with various hygroscopic or proton conductor additives have also been developed for fuel cells operafed xmder low relative humidity (RH) and/or at elevated temperatures. Many studies have reported the use of hygroscopic y-Al203 [52] and silica [53,54] in the CE to improve the water retention capacity and make such CEs viable for operation af lower relative humidity and/or elevated temperature. Alternatively, proton conducting materials such as ZrP [55] or heteropoly acid HEA [56] have also been added... [Pg.80]

In addition to Nafion-based catalyst layers, additional types have been developed, including CLs with different ion exchange capacities (lECs) [57,58] or with other hydrocarbon-type ionomers such as sulfonated poly(ether ether ketone) [58-60], sulfonated polysulfone [61,62], sulfonated polyether ionomers [63], and borosiloxane electrolytes [64], as well as sulfonated polyimide [65]. These nonfluorinated polymer materials have been targeted to reduce cost and/or increase operating temperature. Unfortunately, such CLs still encounter problems with low Pt utilization, flooding, and inferior performance compared wifh convenfional Nafion-based CLs. [Pg.81]

The catalyst layer is composed of multiple components, primarily Nafion ion-omer and carbon-supported catalyst particles. The composition governs the macro- and mesostructures of the CL, which in turn have a significant influence on the effective properties of the CL and consequently the overall fuel cell performance. There is a trade-off between ionomer and catalyst loadings for optimum performance. For example, increased Nafion ionomer confenf can improve proton conduction, but the porous channels for reactanf gas fransfer and water removal are reduced. On the other hand, increased Pt loading can enhance the electrochemical reaction rate, and also increase the catalyst layer thickness. [Pg.92]

The experimental optimization of Nafion ionomer loading within a catalyst layer has attracted widespread attention in the fuel cell community, mainly due to its critical role in dictating the reaction sites and mass transport of reactants and products [15,128-134]. Nafion ionomer is a key component in the CL, helping to increase the three-phase reaction sites and platinum utilization to retain moisture, as well as to prevent membrane dehydration, especially at low current densities. Optimal Nafion content in the electrode is necessary to achieve high performance. [Pg.93]

Lee, D., and Hwang, S. Effect of loading and distribution of Nafion ionomer in the catalyst layer for PEMECs. International Journal of Hydrogen Energy 2008 33 2790-2794. [Pg.98]

The catalyst layer usually consists of carbon-supported catalyst or carbon black mixed with PIPE and/or proton-conducting ionomer (e.g.. Nation iono-mer). Because the sizes of the pores in a t) ical DL are in the range of 1-100 pm and the average pore size of the CL is just a few hundred nanometers, the risk of having low electrical contact between both layers is high [129]. Thus, the MPL is also used to block the catalyst particles and does not let them clog the pores within the diffusion layer [57,90,132,133]. [Pg.236]

In this chapter, we will mainly address the vital topics in theoretical membrane research. Specifically, we will consider aqueous-based proton conductors. Our discussion of efforts in catalyst layer modeling will be relatively brief. Several detailed accounts of the state of the art in catalyst layer research have appeared recently. We will only recapitulate the major guidelines of catalyst layer design and performance optimization and discuss in some detail the role of the ionomer as a proton-supplying network in catalyst layers with a conventional design. [Pg.352]

For typical catalyst layers impregnated with ionomer, sizes of hydrated ionomer domains that form during self-organization are of the order of 10 nm. The random distribution and tortuosity of ionomer domains and pores in catalyst layers require more complex approaches to account properly for bulk water transport and interfacial vaporization exchange. A useful approach for studying vaporization exchange in catalyst layers could be to exploit the analogy to electrical random resistor networks of... [Pg.380]

The factors 4 and 4 accormt for the heterogeneity of the interface. The interfacial flux conditions. Equations (6.56) and (6.57), can be straightforwardly applied at plain interfaces of the PEM with adjacent homogeneous phases of water (either vapor or liquid). However, in PEFCs with ionomer-impregnated catalyst layers, the ionomer interfaces with vapor and liquid water are randomly dispersed inside the porous composite media. This leads to a highly distributed heterogeneous interface. An attempt to incorporate vaporization exchange into models of catalyst layer operation has been made and will be described in Section 6.9.4. [Pg.403]

Ionomer in Catalyst Layers Structure Formation and Performance... [Pg.403]

This section provides a comprehensive overview of recent efforts in physical theory, molecular modeling, and performance modeling of CLs in PEFCs. Our major focus will be on state-of-the-art CLs that contain Pt nanoparticle electrocatalysts, a porous carbonaceous substrate, and an embedded network of interconnected ionomer domains as the main constituents. The section starts with a general discussion of structure and processes in catalyst layers and how they transpire in the evaluation of performance. Thereafter, aspects related to self-organization phenomena in catalyst layer inks during fabrication will be discussed. These phenomena determine the effective properties for transport and electrocatalytic activity. Finally, physical models of catalyst layer operation will be reviewed that relate structure, processes, and operating conditions to performance. [Pg.403]

Microstructures of CLs vary depending on applicable solvenf, particle sizes of primary carbon powders, ionomer cluster size, temperafure, wetting properties of carbon materials, and composition of the CL ink. These factors determine the complex interactions between Pt/carbon particles, ionomer molecules, and solvent molecules, which control the catalyst layer formation process. The choice of a dispersion medium determines whefher fhe ionomer is to be found in solubilized, colloidal, or precipitated forms. This influences fhe microsfrucfure and fhe pore size disfribution of the CL. i It is vital to understand the conditions under which the ionomer is able to penetrate into primary pores inside agglomerates. Another challenge is to characterize the structure of the ionomer phase in the secondary void spaces between agglomerates and obtain the effective proton conductivity of the layer. [Pg.407]

Coarse-grained molecular d5mamics simulations in the presence of solvent provide insights into the effect of dispersion medium on microstructural properties of the catalyst layer. To explore the interaction of Nation and solvent in the catalyst ink mixture, simulations were performed in the presence of carbon/Pt particles, water, implicit polar solvent (with different dielectric constant e), and ionomer. Malek et al. developed the computational approach based on CGMD simulations in two steps. In the first step, groups of atoms of the distinct components were replaced by spherical beads with predefined subnanoscopic length scale. In the second step, parameters of renormalized interaction energies between the distinct beads were specified. [Pg.409]

The macrohomogeneous model was exploited in optimization studies of the catalyst layer composition. The theory of composifion-dependent performance reproduces experimental findings very well. - The value of the mass fraction of ionomer that gives the highest voltage efficiency for a CCL with uniform composition depends on the current density range. At intermediate current densities, 0.5 A cm < jo < 1.2 A cm , the best performance is obtained with 35 wt%. The effect of fhe Nation weight fraction on performance predicted by the model is consistent with the experimental trends observed by Passalacqua et al. ... [Pg.414]


See other pages where Catalyst layer ionomer is mentioned: [Pg.295]    [Pg.264]    [Pg.992]    [Pg.1066]    [Pg.31]    [Pg.380]    [Pg.161]    [Pg.211]    [Pg.295]    [Pg.264]    [Pg.992]    [Pg.1066]    [Pg.31]    [Pg.380]    [Pg.161]    [Pg.211]    [Pg.5]    [Pg.6]    [Pg.304]    [Pg.369]    [Pg.63]    [Pg.64]    [Pg.64]    [Pg.66]    [Pg.70]    [Pg.73]    [Pg.82]    [Pg.83]    [Pg.83]    [Pg.88]    [Pg.88]    [Pg.92]    [Pg.94]    [Pg.94]    [Pg.95]    [Pg.105]    [Pg.420]    [Pg.492]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Catalyst layer

Catalyst layer ionomer self-organization

Catalyst layer ionomer structure

Ionomer in catalyst layer

Ionomer-bonded hydrophilic catalyst layer

© 2024 chempedia.info