Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyst functional group tolerance

The acceptance of a (new) catalytically mediated methodology by the target-directed synthetic community strongly depends on the availability, stability, and functional group tolerance of the respective catalysts. With the commercial availability of Grubbs5 benzylidene ruthenium catalyst A [13] and Schrock s even more active, yet highly air- and moisture-sensitive molybdenum catalyst B [14]... [Pg.273]

Another difference between diese catalysts is found in dieir functional group tolerance. Catalysts such as 12 are more robust to most functionalities (except sulfur and phosphorus), moisture, oxygen, and impurities, enabling them to easily polymerize dienes containing functional groups such as esters, alcohols, and ketones.9 On die other hand, catalyst 14 is more tolerant of sulfur-based functionalities.7 The researcher must choose die appropriate catalyst by considering the chemical interactions between monomer and catalyst as well as the reaction conditions needed. [Pg.438]

The hydrosilylation of carbonyl compounds by EtjSiH catalysed by the copper NHC complexes 65 and 66-67 constitutes a convenient method for the direct synthesis of silyl-protected alcohols (silyl ethers). The catalysts can be generated in situ from the corresponding imidazolium salts, base and CuCl or [Cu(MeCN) ]X", respectively. The catalytic reactions usually occur at room tanperature in THE with very good conversions and exhibit good functional group tolerance. Complex 66, which is more active than 65, allows the reactions to be run under lower silane loadings and is preferred for the hydrosilylation of hindered ketones. The wide scope of application of the copper catalyst [dialkyl-, arylalkyl-ketones, aldehydes (even enoUsable) and esters] is evident from some examples compiled in Table 2.3 [51-53],... [Pg.35]

In conclusion, further work to increase the scope of this reaction, specifically to obtain higher functional group tolerance, is desirable. In addition, the development of a chiral catalyst that enables the production of enantiopure tetra-ort/io substituted biaryls would be of significant interest. [Pg.169]

While the synthesis of fnnctionalised secondary alcohols and amines can be achieved withont catalyst by the addition of organolithium and organomagnesium reagents to C=N and C=0 gronps, these methods lack a significant functional group tolerance. In order to overcome this limitation and access to more functionalised compounds, the catalytic arylation of aldehydes and imines has been extensively studied [2]. [Pg.194]

When the rhodium-catalyzed reaction is performed under a high pressure of CO in the presence of phosphite ligands, aldehyde products (159) are formed by insertion of CO into the rhodium-alkyl bond followed by reductive elimination (Eq. 31) [90]. The bimetallic catalysts were immobilized as nanoparticles, giving the same products and functional group tolerance, with the advantage that the catalyst could be recovered and reused without loss of... [Pg.249]

Since their discovery over a decade ago, late transition metal a-diimine polymerization catalysts have offered new opportunities in the development of novel materials. The Ni(II) catalysts are highly active and attractive for industrial polyolefin production, while the Pd(II) catalysts exhibit unparalleled functional group tolerance and a propensity to form unusually branched polymers from simple monomers. Much of the success of these catalysts derives from the properties of the a-diimine ligands, whose steric bulk is necessary to accelerate the insertion process and inhibit chain transfer. [Pg.215]

Brummond and Shibata independently reported the Rh(i)-catalyzed cycloisomerization of allenynes to cross-conjugated trienes. The rhodium conditions were shown to have broad functional group tolerance. Brummond et al 9 observed rate and selectivity enhancements when they switched to an iridium catalyst (Equation (77)). The rate acceleration observed in the Alder-ene cyclization of aminoester containing allenyne 121 (Equation (78)) was attributed to the Thorpe-Ingold effect.80... [Pg.588]

Vinylsilane to copper transmetallation has entered the literature,93 93a,93b and a system suitable for catalytic asymmetric addition of vinylsilanes to aldehydes was developed (Scheme 24).94 A copper(l) fluoride or alkoxide is necessary to initiate transmetallation, and the work employs a copper(ll) fluoride salt as a pre-catalyst, presumably reduced in situ by excess phosphine ligand. The use of a bis-phosphine was found crucial for reactivity of the vinylcopper species, which ordinarily would not be regarded as good nucleophiles for addition to aldehydes. The highly tailored 5,5 -bis(di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino-4,4 -bis(benzodioxolyl) (DTBM-SEGPHOS) (see Scheme 24) was found to provide the best results, and the use of alkoxysilanes is required. Functional group tolerance has not been adequately addressed, but the method does appear encouraging as a way to activate vinylsilanes for use as nucleophiles. [Pg.809]

Although RCM technology has been known for over 15 years, early examples utilized poorly defined and inefficient catalyst systems which exhibited limited functional group tolerance [2]. These factors made the process unsuitable for most synthetic applications. The recent explosive growth in the area can be attributed primarily to the work of Schrock [3] and Grubbs [4], who developed the stable, well-defined and efficient metathesis initiators 1,2 and 3 (Fig. 1). [Pg.83]

This review focuses on the cross-metathesis reactions of functionalised alkenes catalysed by well-defined metal carbene complexes. The cross- and self-metath-esis reactions of unfunctionalised alkenes are of limited use to the synthetic organic chemist and therefore outside the scope of this review. Similarly, ill-defined multicomponent catalyst systems, which generally have very limited functional group tolerance, will only be included as a brief introduction to the subject area. [Pg.165]

For the cross-metathesis of functionalised alkenes the ill-defined classical catalyst systems currently offer very few advantages (cost and heterogeneous catalysis) over the more functional group tolerant Schrock and Grubbs alkylidene... [Pg.188]

Heterogeneous catalysts such as Pd/C and Pt/C are widely used for this purpose, and often represent the most economical method to carry out these reductions. However, in cases where milder conditions, functional group tolerance and chemoselectivity are required, heterogeneous catalysts can be unsuitable for the task. There has therefore been a substantial research effort aimed towards developing homogeneous catalysts for this purpose. [Pg.413]

The mantiosdcctivity, expressed as enantiomeric excess (ee, %) of a catalyst should be >99% for pharmaceuticals if no purification is possible. This case is quite rare, and ee-values >90% are often acceptable. Chemosdectivity (or functional group tolerance) will be very important when multifunctional substrates are involved. The catalyst productivity, given as turnover number (TON mol product per mol catalyst) or as substrate catalyst ratio (SCR), determines catalyst costs. For hydrogenation reactions, TONs should be >1000 for high-value products and >50000 for large-scale or less-expensive products (catalyst re-use increases the productivity). [Pg.1281]

Table 5 indicates an extremely efficient catalyst with very low catalyst loadings for such a highly coordinating environment. Functional group tolerance appears to be excellent with groups as reactive as arylbromides being converted in close to perfect yield. [Pg.54]

The performance concerning selectivity, activity, productivity and so on, must fulfill the requirements of a given product As a rule of thumb, (enantio) selectivity should be >90-95% turnover numbers (TON) should be >200 for small volume products and reactions with high added value and >10000 for large-volume products and reaction times should not exceed 5-10 h. Furthermore, functional group tolerance will often be important as most substrates will have other functional groups which can either be reduced or which can interfere with the catalyst via complexation. [Pg.3]

To date, only a few iridium catalysts have been applied to industrially relevant targets, especially on the larger scale. It is likely that several types of Ir catalyst are, in principle, feasible for technical applications in the pharmaceutical and agrochemical industries. At present, the most important problems are the relatively low catalytic activities of many highly selective systems and the fact, that relatively few catalysts have been applied to multifunctional substrates. For this reason, the scope and limitations of most catalysts known today have not yet been explored. For those in academic research, the lesson might be to employ new catalysts not only with monofunctional model compounds but also to test functional group tolerance and-as has already been done in some cases-to apply the catalysts to the total synthesis of relevant target molecules. [Pg.13]

Late transition-metal hydroamination is the method of choice for the atom economical and functional group-tolerant construction of C—N bonds, and in this context Ir plays a central role (indeed, homogenous transition-metal-catalyzed OHA was discovered with Rh and Ir). However, there is a strong need for the development of better OHA catalyst systems that are applicable to a wider range of substrates and conditions. The characteristics of current Ir based catalyst systems to function via N—H bond activation, though, is a potential handicap to achieve this goal, since it implies highly reactive Ir intermediates that are prone... [Pg.169]

An alternative method to make PAEs is the acyclic diyne metathesis (ADIMET) shown in Scheme 2. It is the reaction of a dipropynylarene with Mo(CO)6 and 4-chlorophenol or a similarly acidic phenol. The reaction is performed at elevated temperatures (130-150 °C) and works well for almost any hydrocarbon monomer. The reaction mixture probably forms a Schrock-type molybdenum carbyne intermediate as the active catalyst. Table 5 shows PAEs that have been prepared utilizing ADIMET with these in situ catalysts . Functional groups (with the exception of double bonds) are not well tolerated, but dialkyl PPEs are obtained with a high degree of polymerization. The progress in this field has been documented in several reviews (Table 1, entries 2-4). Recently, a second generation of ADIMET catalyst has been developed that allows... [Pg.15]


See other pages where Catalyst functional group tolerance is mentioned: [Pg.180]    [Pg.196]    [Pg.180]    [Pg.196]    [Pg.271]    [Pg.275]    [Pg.354]    [Pg.359]    [Pg.6]    [Pg.34]    [Pg.156]    [Pg.65]    [Pg.168]    [Pg.157]    [Pg.388]    [Pg.165]    [Pg.196]    [Pg.581]    [Pg.669]    [Pg.164]    [Pg.165]    [Pg.223]    [Pg.524]    [Pg.527]    [Pg.156]    [Pg.79]    [Pg.39]    [Pg.149]    [Pg.158]    [Pg.95]    [Pg.187]    [Pg.73]   
See also in sourсe #XX -- [ Pg.196 ]




SEARCH



Catalyst activity and functional group tolerance

Catalyst, function

Catalysts functional

Catalysts tolerance

Functional group tolerance

Functionalization catalysts

Group 8 catalysts

Phase-transfer catalysts, functional group tolerance

Tolerance functional

© 2024 chempedia.info