Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Schrock-type

The surprising stability of N-heterocyclic carbenes was of interest to organometallic chemists who started to explore the metal complexes of these new ligands. The first examples of this class had been synthesized as early as 1968 by Wanzlick [9] and Ofele [10], only 4 years after the first Fischer-type carbene complex was synthesized [2,3] and 6 years before the first report of a Schrock-type carbene complex [11]. Once the N-heterocyclic ligands are attached to a metal they show a completely different reaction pattern compared to the electrophilic Fischer- and nucleophilic Schrock-type carbene complexes. [Pg.2]

Scheme 4 Schrock-type and Fischer-type carbene complexes... Scheme 4 Schrock-type and Fischer-type carbene complexes...
Schrock-type carbenes are nucleophilic alkylidene complexes formed by coordination of strong donor ligands such as alkyl or cyclopentadienyl with no 7T-acceptor ligand to metals in high oxidation states. The nucleophilic carbene complexes show Wittig s ylide-type reactivity and it has been discussed whether the structures may be considered as ylides. A tantalum Schrock-type carbene complex was synthesized by deprotonation of a metal alkyl group [38] (Scheme 7). [Pg.5]

Scheme 7 Synthesis of the first Schrock-type carbene complex... Scheme 7 Synthesis of the first Schrock-type carbene complex...
Fig. 1 A,B Dominant orbital interactions in Fischer-type carbene complexes (A) and Schrock-type carbene complexes (B)... Fig. 1 A,B Dominant orbital interactions in Fischer-type carbene complexes (A) and Schrock-type carbene complexes (B)...
A decade after Fischer s synthesis of [(CO)5W=C(CH3)(OCH3)] the first example of another class of transition metal carbene complexes was introduced by Schrock, which subsequently have been named after him. His synthesis of [((CH3)3CCH2)3Ta=CHC(CH3)3] [11] was described above and unlike the Fischer-type carbenes it did not have a stabilizing substituent at the carbene ligand, which leads to a completely different behaviour of these complexes compared to the Fischer-type complexes. While the reactions of Fischer-type carbenes can be described as electrophilic, Schrock-type carbene complexes (or transition metal alkylidenes) show nucleophilicity. Also the oxidation state of the metal is generally different, as Schrock-type carbene complexes usually consist of a transition metal in a high oxidation state. [Pg.9]

AT-heterocyclic carbenes show a pure donor nature. Comparing them to other monodentate ligands such as phosphines and amines on several metal-carbonyl complexes showed the significantly increased donor capacity relative to phosphines, even to trialkylphosphines, while the 7r-acceptor capability of the NHCs is in the order of those of nitriles and pyridine [29]. This was used to synthesize the metathesis catalysts discussed in the next section. Experimental evidence comes from the fact that it has been shown for several metals that an exchange of phosphines versus NHCs proceeds rapidly and without the need of an excess quantity of the NHC. X-ray structures of the NHC complexes show exceptionally long metal-carbon bonds indicating a different type of bond compared to the Schrock-type carbene double bond. As a result, the reactivity of these NHC complexes is also unique. They are relatively resistant towards an attack by nucleophiles and electrophiles at the divalent carbon atom. [Pg.12]

Scanning force morphology (SFM), 490 Schiff base structures, 152 Schrock alkylidenes, 433 Schrock-type alkylidene catalysts, 438 Sealants... [Pg.600]

Phosphinidenes differ from carbenes because of the additional lone pair. This lone pair enables interactions with, e.g., a transition metal group for increased stability, while maintaining carbene-hke behavior. These terminal /] -complexed phosphinidenes differ from the p2-> fi3-> and p4-complexes, which are not part of this survey. Phosphinidenes that are stabilized by a transition metal group also relate to carbene complexes. A distinction in Fischer and Schrock-type complexes has been advanced to distinguish phosphinidene complexes with nucleophilic properties from those that are electrophiHc [ 13 ]. In this survey we address this topic in more detail. [Pg.96]

Electrophilic and nucleophilic phosphinidene complexes have been related to the corresponding carbene complexes of which the Fischer-type is usually considered as a singlet-singlet combination and the Schrock-type as a triplet-triplet combination. However, both the strongly preferred triplet state of R-P and the M=P bond analysis suggest this schematic interpretation to be less appropriate for transition metal complexed phosphinidenes. [Pg.103]

When the development of carbene-complex chemistry began in the mid seventies, two different patterns of reactivity emerged and led to a, maybe overemphasized, division of these compounds into (electrophilic) Fischer-type and (nucleophilic) Schrock-type carbene complexes (Figure 1.1). [Pg.1]

In situation (a) a strong carbon-metal bond results. To this group belong the typical Schrock-type carbenes [e.g. Np3Ta=CH(7Bu)], many of which are nucleophilic at carbon. Situation (b) should also lead to nucleophilic carbene complexes, albeit with a weaker carbon-metal bond. Typical reactions of nucleophilic carbene complexes include carbonyl olefination (Section 3.2.4) and olefin metathesis (Section 3.2.5). [Pg.2]

Fischer-Type and Schrock-Type Carbene Complexes Theoretical Treatment 3... [Pg.3]

Transition metal carbene complexes have broadly been classified into Fischer-type and Schrock-type carbene complexes. The former, typically low-valent, 18-electron complexes with strong 7t-acceptors at the metal, are electrophilic at the carbene carbon atom (C ). On the other hand, Schrock-type carbene complexes are usually high-valent complexes with fewer than 18 valence electrons, and without n-accepting ligands. Schrock-type carbene complexes generally behave as carbon nucleophiles (Figure 1.4). [Pg.3]

This reactivity pattern is certainly unexpected. Why should low-valent complexes react as electrophiles and highly oxidized complexes be nucleophilic Numerous calculations on model compounds have provided possible explanations for the observed chemical behavior of both Fischer-type [3-8] and Schrock-type [9-17] carbene complexes. In simplified terms, a rationalization of the reactivity of carbene complexes could be as follows. The reactivity of non-heteroatom-stabilized carbene complexes is mainly frontier-orbital-controlled. The energies of the HOMO and LUMO of carbene complexes, which are critical for the reactivity of a given complex, are determined by the amount of orbital overlap and by the energy-difference between the empty carbene 2p orbital and a d orbital (of suitable symmetry) of the group L M. [Pg.3]

Fig. 1.4. Typical Fischer-type and Schrock-type carbene complexes. Fig. 1.4. Typical Fischer-type and Schrock-type carbene complexes.
Fischer-type and Schrock-type carbene complexes not only differ in their electrophilicity at C but also have strikingly different reactivity towards alkenes (Figure 1.6). [Pg.5]

The molybdenum complex 1, a typical high-valent Schrock-type carbene, efficiently catalyzes the self-metathesis of styrene. On the other hand, the cationic iron complex 3 does not induce metathesis but stoichiometrically cyclopropanates styrene. The tungsten complex 2, again a Fischer-type carbene complex, mediates... [Pg.5]

Fig, 1.6. Different reactivities of Fischer-type and Schrock-type carbene complexes [22-24]. ROH (Cp3)2(CH3)COH ArNH2 2,6-diisopropylaniline complex 1 is formed in situ from the corresponding 2-methyl-2-phenyl-l-propylidene complex and styrene. [Pg.6]

Non-heteroatom-substituted carbene complexes cover a broad spectrum of different reactivities, largely dependent on the electronic properties of the metal. In Chapter 1 the division of carbene complexes into Fischer-type and Schrock-type carbenes was discussed. This way of grouping carbene complexes, although difficult to apply... [Pg.103]

Schrock type carbene complexes are usually high-valent, electron-deficient complexes without 7t-accepting ligands. These complexes often behave as C-nucleophiles and typical reactions include carbonyl olefination and olefin metathesis. [Pg.105]

Some Schrock-type carbene complexes, i.e. high-valent, electron-deficient, nucleophilic complexes of early transition metals, can undergo C-H insertion reactions with simple alkanes or arenes. This reaction corresponds to the reversal of the formation of these carbene complexes by elimination of an alkane (Figure 3.36). [Pg.119]

As discussed in previous sections, high-valent carbene complexes of early transition metals have ylide-like, nucleophilic character. Some Schrock-type carbene complexes react with carbonyl compounds in the same manner as do phosphorus ylides, namely by converting the carbonyl group into an alkene. [Pg.125]

Most experimental data suggest that the actual methylenating agent derived from the Tebbe reagent upon treatment with a weak base, is the highly reactive carbene complex Cp2Ti=CH2 [709]. This complex is a typical Schrock-type carbene, because it is high-valent [Ti(IV)], electron-deficient (16 valence electrons) and nucleophilic at carbon. [Pg.126]

Apart from the tandem metathesis/carbonyl o[efination reaction mediated by the Tebbe reagent (Section 3.2.4.2), few examples of the use of stoichiometric amounts of Schrock-type carbene complexes have been reported. A stoichiometric variant of cross metathesis has been described by Takeda in 1998 [634]. Titanium carbene complexes, generated in situ from dithioacetals, Cp2TiCl2, magnesium, and triethylphosphite (see Experimental Procedures 3.2.2 and 3.2.6), were found to undergo stoichiometric cross-metathesis reactions with allylsilanes [634]. The scope of this reaction remains to be explored. [Pg.167]


See other pages where Schrock-type is mentioned: [Pg.7]    [Pg.9]    [Pg.9]    [Pg.10]    [Pg.10]    [Pg.11]    [Pg.13]    [Pg.275]    [Pg.433]    [Pg.95]    [Pg.102]    [Pg.205]    [Pg.205]    [Pg.207]    [Pg.300]    [Pg.477]    [Pg.412]    [Pg.212]    [Pg.214]    [Pg.4]    [Pg.5]    [Pg.141]   
See also in sourсe #XX -- [ Pg.649 , Pg.650 ]




SEARCH



Alkylidene complexes Schrock-type

Alkylidenes Schrock-type

Metallocarbenes Schrock-type

Molybdenum complexes Schrock-type

Schrock

Schrock type carbynes

Schrock-Type, Mo-or W-Based Systems

Schrock-type alkylidyne complexes

Schrock-type alkylidyne-metal complexes

Schrock-type carbene

Schrock-type carbene complexes

Schrock-type carbene complexes, transition metal

Schrock-type catalysts

Schrock-type complexes

Schrock-type initiators

Schrock-type metathesis catalysts

Schrock-type nucleophilic

Schrock-type nucleophilic carbenes

Schrock-type systems

© 2024 chempedia.info