Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cast iron corrosion resistance

Austenitic cast irons show particularly good corrosion resistance in alkaline environments, even better than that shown by low alloy cast irons. The resistance to corrosion improves with increasing nickel content (Fig. 3.51),... [Pg.609]

Corrosive Medium 1020 Steel Grey Cast Iron Ni-Resist Cast Iron 12% Cr Steel 17% Cr Steel Stainless Steel 301 Stainless Steel 316 14% Si Iron... [Pg.1432]

The austenitic cast iron alloys with 13-35% nickel and 1-5% chromium, also known under the commercial name Ni-Resist [93], show, due to their austenitic structure, much better corrosion behaviour in stagnant and flowing seawater than unalloyed castings. The corrosion resistance increases markedly with increasing chromium content. The carbon may be present either as graphite in lamellar form... [Pg.226]

Nickel—Iron. A large amount of nickel is used in alloy and stainless steels and in cast irons. Nickel is added to ferritic alloy steels to increase the hardenabihty and to modify ferrite and cementite properties and morphologies, and thus to improve the strength, toughness, and ductihty of the steel. In austenitic stainless steels, the nickel content is 7—35 wt %. Its primary roles are to stabilize the ductile austenite stmcture and to provide, in conjunction with chromium, good corrosion resistance. Nickel is added to cast irons to improve strength and toughness. [Pg.6]

The higher boiling phenols, present in considerable amounts in CVR and low temperature tars, are corrosive to mild steel, especially above 300°C. Cast iron, chrome steel, and stainless steel are more resistant. Furnace tubes, the insides of fractionating columns, and the rotors of pumps handling hot pitch and base tar are generally constmcted of these metals. Nevertheless, to ensure satisfactory furnace tube life, particularly in plants processing CVR or low temperature tars, the tube temperature should be kept to a minimum. [Pg.338]

Corrosion. Copper-base alloys are seriously corroded by sodium thiosulfate (22) and ammonium thiosulfate [7783-18-8] (23). Corrosion rates exceed 10 kg/(m yr) at 100°C. High siUcon cast iron has reasonable corrosion resistance to thiosulfates, with a corrosion rate <4.4 kg/(m yr)) at 100°C. The preferred material of constmction for pumps, piping, reactors, and storage tanks is austenitic stainless steels such as 304, 316, or Alloy 20. The corrosion rate for stainless steels is <440 g/(m yr) at 100°C (see also Corrosion and corrosion control). [Pg.27]

Uses. Copper—nickel—iron alloys, UNS C 96200 (90 10 copper nickel) and UNS C 96400 (70 30 copper nickel), are used in corrosion-resistant marine (seawater) appHcations. UNS C 96400 is used for corrosion-resistant marine elbows, flanges, valves, and pumps. Leaded nickel—brass, UNS C 97300 (12% nickel-silver), is used for hardware fittings, valves, and statuary and ornamental castings. [Pg.251]

Ejectors are available in many materials of construction to suit process requirements. If the gases or vapors are not corrosive, the diffuser is usually constructed of cast iron and the steam nozzle of stainless steel. For more corrosive gases and vapors, many combinations of materials such as bronze, various stainless-steel alloys, and other corrosion-resistant metals, carbon, and glass can be used. [Pg.935]

NOTE Outline drawings for flanged valves shown VS-in raised face machined onto flange, as for 400-lb cast-steel valves 150- and 300-lb cast-steel valves and 2.50-lb cast-iron valves have i/ifi-in raised faces 125-lb cast-iron and 150-lb corrosion-resistant valves covered by MSS-SP-42 have no raised faces. [Pg.967]

With some important exceptions, gray-iron castings generally have corrosion resistance similar to that of carbon steel. They do resist atmospheric corrosion as well as attack by natural or neutral waters and neutral soils. However, dilute acids and acid-salt solutions will attack this material. [Pg.2443]

Alloy Cast Irons Cast iron is not usually considered corrosion-resistant, but this condition can be improved by the use of various cast-iron alloys. A number of such materials are commercially available. [Pg.2443]

High-silicon cast irons have excellent corrosion resistance. Sih-con content is 13 to 16 percent. This material is known as Durion. Adding 4 percent Cr yields a product called Durichlor, which has improved resistance in the presence of oxidizing agents. These alloys are not readily machined or welded. [Pg.2443]

Corrosion resistance of nickel allovs is superior to that of cast irons but less than that of pure nickel. There is uttle attack from neutral or alkaline solutions. Oxidizing acids such as nitric are highly detrimental. Cold, concentrated sulfuric acid can be handled. [Pg.2443]

Stainless Steel There are more than 70 standard types of stainless steel and many special alloys. These steels are produced in the wrought form (AISI types) and as cast alloys [Alloy Casting Institute (ACI) types]. Gener y, all are iron-based, with 12 to 30 percent chromium, 0 to 22 percent nickel, and minor amounts of carbon, niobium (columbium), copper, molybdenum, selenium, tantalum, and titanium. These alloys are veiy popular in the process industries. They are heat- and corrosion-resistant, noncontaminating, and easily fabricated into complex shapes. [Pg.2443]

Ni-Resist corrosion-resistant cast irons 0 2 3 3 < 400 2 < 750 Cast No Good 22-31 10.3 ... [Pg.2446]

Mild steel, also low-alloy irons and steels 0 3 0 3 < 400 1 < 750 Wronglit, cast Good Good 67 6.7 Higli strengths obtainable by alloying, also improved atmospheric corrosion resistance. See ASTM specifications for particular grade... [Pg.2446]

Changing the pump metallurgy to a more corrosion- and cavitation-resistant material, such as stainless steel, is a potential solution to this type of problem. Note, however, that all other cast iron pump components that have sustained graphitic corrosion should be replaced to avoid the possibility of galvanic corrosion (see Chap. 16) between retained graphitically corroded cast iron components and new components. [Pg.285]

Graphitically corroded cast irons may induce galvanic corrosion of metals to which they are coupled due to the nobility of the iron oxide and graphite surface. For example, cast iron or cast steel replacement pump impellers may corrode rapidly due to the galvanic couple established with the graphitically corroded cast iron pump casing. In this or similar situations, the entire affected component should be replaced. If just one part is replaced, it should be with a material that will resist galvanic corrosion, such as austenitic cast iron. [Pg.380]

Austenitic cast irons (either flake graphite irons or nodular graphite irons) are produced by mixing in nickel from 13-30%, chromium from 1-5% and copper from 0.5-7.5 (to lower nickel-containing grades to augment the corrosion resistance at lower cost). [Pg.57]

The main advantages of austenitic cast irons are corrosion and heat resistance. For corrosion resistance, the flake and nodular are similar, but the mechanical properties of nodular cast irons are superior. Some of the commercially available austenitic cast irons are given in the Tables 3.4 and 3.5. [Pg.57]

The corrosion resistance of unalloyed and low-alloy flake, nodular, malleable and white cast iron is comparable to mild- and low-alloy steel. However, these cast irons have a major advantage over steel namely, greater cross section or wall thickness than steel. Consequently, they have a... [Pg.57]


See other pages where Cast iron corrosion resistance is mentioned: [Pg.301]    [Pg.1196]    [Pg.866]    [Pg.124]    [Pg.25]    [Pg.45]    [Pg.97]    [Pg.539]    [Pg.117]    [Pg.189]    [Pg.273]    [Pg.388]    [Pg.128]    [Pg.159]    [Pg.247]    [Pg.283]    [Pg.486]    [Pg.155]    [Pg.207]    [Pg.2420]    [Pg.2443]    [Pg.2444]    [Pg.379]    [Pg.219]    [Pg.101]    [Pg.509]    [Pg.269]    [Pg.53]   
See also in sourсe #XX -- [ Pg.3 , Pg.130 ]

See also in sourсe #XX -- [ Pg.3 , Pg.130 ]




SEARCH



Cast iron

Cast iron corrosion

Corrosion resistance

Iron casting

Iron: corrosion

© 2024 chempedia.info