Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Austenitic Cast Iron

FE 4 unalloyed and low-alloy steels FE 5 cast iron, austenitic cast iron CU 1 to CU 8 copper-based alloys (Cu, CuNi, CuZn, CuSn, CuAl)... [Pg.575]

Second, better inherent corrosion resistant can also be used to increase the erosion-corrosion resistance of cast irons. Austenitic nickel cast irons can have hardness similar to unalloyed cast irons but may exhibit better erosion resistance because of the improved inherent resistance of nickel alloyed irons compared to unalloyed irons. [Pg.618]

The materials are austenitic stainless steel (Hereafter,it is said SUS304), ductile cast iron (Hereafter, it is said FCD500), and pure Ni. The composition of the materials is shown in Table. 1. Moreover, the sound characteristic of the materials and air as the defect are shown in Table.2. [Pg.834]

Nickel—Iron. A large amount of nickel is used in alloy and stainless steels and in cast irons. Nickel is added to ferritic alloy steels to increase the hardenabihty and to modify ferrite and cementite properties and morphologies, and thus to improve the strength, toughness, and ductihty of the steel. In austenitic stainless steels, the nickel content is 7—35 wt %. Its primary roles are to stabilize the ductile austenite stmcture and to provide, in conjunction with chromium, good corrosion resistance. Nickel is added to cast irons to improve strength and toughness. [Pg.6]

Corrosion. Copper-base alloys are seriously corroded by sodium thiosulfate (22) and ammonium thiosulfate [7783-18-8] (23). Corrosion rates exceed 10 kg/(m yr) at 100°C. High siUcon cast iron has reasonable corrosion resistance to thiosulfates, with a corrosion rate <4.4 kg/(m yr)) at 100°C. The preferred material of constmction for pumps, piping, reactors, and storage tanks is austenitic stainless steels such as 304, 316, or Alloy 20. The corrosion rate for stainless steels is <440 g/(m yr) at 100°C (see also Corrosion and corrosion control). [Pg.27]

M 20 steel, steel castings, austenitic or manga-nese steel, gray cast iron... [Pg.205]

Cadmium I Mild steel cast iron Low alloy steel 1 Austenitic nickel cast iron 1 Aluminum bronze 1 Naval brass, yellow brass, red brass Tin Copper... [Pg.278]

Temperature, op Carbon steel, carbon-molybdenum low-chromium (through 3 Cr Mo) 5Cr Mo through 9 Cr Mo Austenitic stainless steels, 18 Cr, 8 Ni 12 Cr 17 Cr 27 Cr 25 Cr, 20 Ni Monel 67 Ni, 30Cii 3V2 Nickel Aluminum Gray cast iron Bronze Brass 70Cii, 30 Ni Ni-Fe-Cr Ni-Cr-Fe Ductile iron... [Pg.996]

Graphitically corroded cast irons may induce galvanic corrosion of metals to which they are coupled due to the nobility of the iron oxide and graphite surface. For example, cast iron or cast steel replacement pump impellers may corrode rapidly due to the galvanic couple established with the graphitically corroded cast iron pump casing. In this or similar situations, the entire affected component should be replaced. If just one part is replaced, it should be with a material that will resist galvanic corrosion, such as austenitic cast iron. [Pg.380]

Grinding Abrasion. The suitable alloys range from austenitic manganese steel (which once dominated the field) through hardenable carbon and medium alloy steels to the abrasion-resistant cast irons. [Pg.269]

Austenitic cast irons (either flake graphite irons or nodular graphite irons) are produced by mixing in nickel from 13-30%, chromium from 1-5% and copper from 0.5-7.5 (to lower nickel-containing grades to augment the corrosion resistance at lower cost). [Pg.57]

The main advantages of austenitic cast irons are corrosion and heat resistance. For corrosion resistance, the flake and nodular are similar, but the mechanical properties of nodular cast irons are superior. Some of the commercially available austenitic cast irons are given in the Tables 3.4 and 3.5. [Pg.57]

The austenitic cast irons are in widespread use in many industries (food, pharmaceutical, petroleum, chemical, petrochemical, pulp and paper, etc.) in mildly corrosive and erosive situations where the life of unalloyed or low-alloy cast iron or steel is short, but the high cost of stainless steel and nonferrous alloys cannot be justified. [Pg.60]

Other austenitic cast iron applications can be found in food and dairy production, where the metallic contamination of the product must be eliminated. [Pg.60]

Gray cast irons do not have the abrupt ductile to brittle fraction transition down to -40°C as takes place in steels. Special austenitic nodular cast iron similar to the AUS 203 grade, but with a higher manganese content of about 4%, has been obtained for cryogenic purposes for temperatures down to -253°C. [Pg.60]

Cast irons, although common, are in fact quite complex alloys. The iron-carbon phase diagram exhibits a eutectic reaction at 1 420 K and 4-3 wt.<7oC see Fig. 20.44). One product of this eutectic reaction is always austenite however, depending on the cooling rate and the composition of the alloy, the other product may be cementite or graphite. The graphite may be in the form of flakes which are all interconnected (although they appear separate on a... [Pg.48]

The addition of about 20% nickel to cast iron produces materials with a stable austenitic structure these materials are sometimes known as austenitic cast irons but are more often referred to commercially as Ni-Resist cast irons. The austenitic matrix of these irons gives rise to very different mechanical and physical properties to those obtained with the nickel-free grey cast irons. The austenitic matrix is more noble than the matrix of unalloyed grey irons and it was shown in the early work of Vanick and Merica that the corrosion resistance of cast iron increases with increasing nickel content up to about 20% (Fig. 3.42). [Pg.599]

The austenitic cast irons show better corrosion resistance than the ferritic irons primarily due to the nickel content of the austenitic matrix. [Pg.601]

Potential-current density (E-i) curves, which have been determined for a number of the austenitic cast irons and also for the nickel-free ferritic irons, indicate that in general the austenitic cast irons show more favourable corrosion characteristics than the ferritic irons in both the active and passive states. [Pg.601]

One of the outstanding properties of the austenitic irons is their resistance to graphitic corrosion or graphitisation . In some environments ferritic cast irons corrode in such a manner that the surface becomes covered with a layer of graphite. This compact graphite layer, being more noble than the matrix, markedly increases the rate of attack. The austenitic irons rarely form this... [Pg.603]

Fig. 3.47 Current densities in active and passive regions for ferrite and austenitic cast irons... Fig. 3.47 Current densities in active and passive regions for ferrite and austenitic cast irons...
Water which is used for cooling purposes in refineries and chemical plant can cause severe problems of corrosion and erosion. Ordinary cast irons usually fail in this type of environment due to graphitic corrosion or corrosion/ erosion. Ni-Resist irons however show better corrosion resistance, due to the nobility of the austenitic matrix, and are preferred for use in the more aggressive environments such as those containing appreciable amounts of carbon dioxide or polluted with chemical wastes or sea-water. [Pg.606]

The austenitic irons have also been shown to exhibit better corrosion resistance than the ferritic irons in sea-water. Tests over long periods of time have shown that Ni-Resist irons of Types 1, 2 and 3 corrode at rates of 0 020 to 0-058 mmy in relatively quiet sea-water. Under similar conditions low alloy cast irons have shown corrosion rates ranging from 0-066 to 0-53 mmy" . The Ni-Resist irons maintain this superiority over a wide variety of conditions (Figs. 3.49 and 3.50) both in stationary and flowing sea-water. In a test lasting 740 days in sea-water moving at l-5m/s low... [Pg.606]

Under certain conditions of temperature and concentration the austenitic cast irons show useful resistance to hydrogen-evolving mineral acids. [Pg.607]

The austenitic irons can be usefully applied in handling very dilute solutions of sulphuric acid at ambient or moderately elevated temperatures under conditions which can be very corrosive to ordinary cast iron and carbon steel. Austenitic irons have also given satisfactory service in handling... [Pg.607]

The austenitic irons are superior to ordinary cast iron in their resistance to corrosion by a wide range of concentrations of hydrochloric acid at room temperature (Table 3.50). However, for practical uses where such factors as velocity, aeration and elevated temperatures have to be considered, the austenitic irons are mostly used in environments where the hydrochloric acid concentration is less than 0- 5%. Such environments occur in process streams encountered in the production and handling of chlorinated hydrocarbons, organic chlorides and chlorinated rubbers. [Pg.608]

The austenitic irons are also useful in some circumstances for handling organic acids such as dilute acetic, formic and oxalic acids, fatty acids and tar acids. They are more resistant to organic acids than unalloyed cast irons, e.g. in acetic acid the austenitic irons show corrosion rates 20-40 times lower than the ferritic iron (Table 3.51). [Pg.608]


See other pages where Austenitic Cast Iron is mentioned: [Pg.53]    [Pg.53]    [Pg.44]    [Pg.68]    [Pg.312]    [Pg.53]    [Pg.53]    [Pg.44]    [Pg.68]    [Pg.312]    [Pg.79]    [Pg.467]    [Pg.385]    [Pg.954]    [Pg.1830]    [Pg.1830]    [Pg.2420]    [Pg.379]    [Pg.269]    [Pg.114]    [Pg.57]    [Pg.60]    [Pg.899]    [Pg.49]    [Pg.599]   
See also in sourсe #XX -- [ Pg.3 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 ]

See also in sourсe #XX -- [ Pg.3 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 ]




SEARCH



Austenitic

Austenitic ductile cast iron

Austenitic gray cast irons

Austenitic nickel cast iron, corrosion

Cast iron

Iron casting

© 2024 chempedia.info