Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonates toughness

Hard steel 99% iron, 1 % carbon Tough and brittle Cutting tools, chisels, razor blades... [Pg.177]

PP/Elastomer PP/Calcium carbonate Toughness PP toughness higher with elastomer compared to calcium carbonate Zhang et al. 2004... [Pg.1050]

Nylon A class of synthetic fibres and plastics, polyamides. Manufactured by condensation polymerization of ct, oj-aminomonocarboxylic acids or of aliphatic diamines with aliphatic dicarboxylic acids. Also rormed specifically, e.g. from caprolactam. The different Nylons are identified by reference to the carbon numbers of the diacid and diamine (e.g. Nylon 66 is from hexamethylene diamine and adipic acid). Thermoplastic materials with high m.p., insolubility, toughness, impact resistance, low friction. Used in monofilaments, textiles, cables, insulation and in packing materials. U.S. production 1983 11 megatonnes. [Pg.284]

Polyamides from diamines and dibasic acids. The polyamides formed from abphatic diamines (ethylene- to decamethylene-diamine) and abphatic dibasic acids (oxabc to sebacic acid) possess the unusual property of forming strong fibres. By suitable treatment, the fibres may be obtained quite elastic and tough, and retain a high wet strength. These prpperties render them important from the commercial point of view polyamides of this type are cabed nylons The Nylon of commerce (a 66 Nylon, named after number of carbon atoms in the two components) is prepared by heating adipic acid and hexamethylenediamine in an autoclave ... [Pg.1019]

Iron is hard, brittle, fairly fusible, and is used to produce other alloys, including steel. Wrought iron contains only a few tenths of a percent of carbon, is tough, malleable, less fusible, and has usually a "fibrous" structure. [Pg.58]

Commercially produced elastic materials have a number of additives. Fillers, such as carbon black, increase tensile strength and elasticity by forming weak cross links between chains. This also makes a material stilfer and increases toughness. Plasticizers may be added to soften the material. Determining the effect of additives is generally done experimentally, although mesoscale methods have the potential to simulate this. [Pg.313]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

The pelargonic acid by-product is already a useful item of commerce, making the overall process a commercial possibiUty. The 13-carbon polyamides appear to have many of the properties of nylon-11, nylon-12, or nylon-12,12 toughness, moisture resistance, dimensional stabiUty, increased resistance to hydrolysis, moderate melt point, and melt processibiUty. Thus, these nylons could be useful in similar markets, eg, automotive parts, coatings, fibers, or films. Properties for nylon-13,13 are = 56 (7 and = 183 (7 (179). [Pg.237]

The durabihty and versatility of steel are shown by its wide range of mechanical and physical properties. By the proper choice of carbon content and alloying elements, and by suitable heat treatment, steel can be made so soft and ductile that it can be cold-drawn into complex shapes such as automobile bodies. Conversely, steel can be made extremely hard for wear resistance, or tough enough to withstand enormous loads and shock without deforming or breaking. In addition, some steels are made to resist heat and corrosion by the atmosphere and by a wide variety of chemicals. [Pg.373]

If small specimens are prepared in which the austenite can be cooled to 250—500°C sufficiendy rapidly to avoid the above microconstituents, and transformed at temperatures in this range, the formation of a completely different phase, a bcc a-phase supersaturated with carbon and containing small cementite particles (bainite), which is both strong and tough, occurs. Bainite is rarely found in plain carbon steels, but it can be obtained in commercial practice by judicious alloying and is increasing in importance. [Pg.385]

EinaHy, hydrogen in relatively small amounts can lead to cracking, especially as the strength increases. If the presence of hydrogen caimot be adequately lowered by the ladle treatment, combinations of low carbon and siHcon, inclusion shape control, and more than 0.25% copper can be helpful in minimizingloss of toughness. [Pg.396]

An important item in this array of matenals is the class known as maraging steels. This group of high nickel martensitic steels contain so Htde carbon that they are often referred to as carbon-free iron—nickel martensites (54). Carbon-free iron—nickel martensite with certain alloying elements is relatively soft and ductile and becomes hard, strong, and tough when subjected to an aging treatment at around 480°C. [Pg.400]

Fig. 5. Interlaminar fracture toughness, for a number of thermosetting and thermoplastic composites (36,37). Open white bars represent glass-fiber composites shaded bars are for carbon fibers. The materials are A, polyester (unidirectional) B, vinyl ester (CSM = chopped strand mat) C, epoxy (R/BR1424) D, epoxy (T300/914) E, PPS F, PES and G, PEEK. To convert J/m to fdbf/in. multiply by 2100. Fig. 5. Interlaminar fracture toughness, for a number of thermosetting and thermoplastic composites (36,37). Open white bars represent glass-fiber composites shaded bars are for carbon fibers. The materials are A, polyester (unidirectional) B, vinyl ester (CSM = chopped strand mat) C, epoxy (R/BR1424) D, epoxy (T300/914) E, PPS F, PES and G, PEEK. To convert J/m to fdbf/in. multiply by 2100.
The synthesis of his[3-(2-a11y1phenoxy)phtha1imides] and their copolymer properties with BMI have been reported (43). These allylphenoxyimide—BMI copolymers provide toughness and temperature resistance when used in carbon fiber laminates (44). [Pg.28]

Polycarbonates. Polyarjiates are aromatic polyesters commonly prepared from aromatic dicarboxylic acids and diphenols. One of the most important polyarylates is polycarbonate, a polyester of carbonic acid. Polycarbonate composite is extensively used in the automotive industry because the resin is a tough, corrosion-resistant material. Polycarbonates (qv) can be prepared from aUphatic or aromatic materials by two routes reaction of a dihydroxy compound with phosgene accompanied by Hberation ofHCl(eq. 5) ... [Pg.37]


See other pages where Carbonates toughness is mentioned: [Pg.222]    [Pg.320]    [Pg.373]    [Pg.287]    [Pg.354]    [Pg.486]    [Pg.496]    [Pg.188]    [Pg.238]    [Pg.375]    [Pg.260]    [Pg.385]    [Pg.389]    [Pg.393]    [Pg.396]    [Pg.396]    [Pg.397]    [Pg.101]    [Pg.162]    [Pg.194]    [Pg.198]    [Pg.461]    [Pg.567]    [Pg.330]    [Pg.121]    [Pg.126]    [Pg.7]    [Pg.8]    [Pg.14]    [Pg.28]    [Pg.35]    [Pg.36]    [Pg.40]    [Pg.48]    [Pg.48]    [Pg.49]   
See also in sourсe #XX -- [ Pg.67 , Pg.69 ]




SEARCH



Tough

© 2024 chempedia.info