Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonate mass transfer

In certain adsorbents, notably partially coked 2eohtes and some carbon molecular sieves, the resistance to mass transfer may be concentrated at the surface of the particle, lea ding to an uptake expression of the form... [Pg.260]

The original hot carbonate process developed by the U.S. Bureau of Mines was found to be corrosive to carbon steel (55). Various additives have been used in order to improve the mass transfer rate as well as to inhibit corrosion. Vetrocoke, Carsol, Catacarb, Benfteld, and Lurgi processes are all activated carbonate processes. Improvements in additives and optimization of operation have made activated carbonate processes competitive with activated MDEA and nonaqueous solvent based systems. Typical energy requirements are given in Table 9. [Pg.349]

In principle, the catalytic converter is a fixed-bed reactor operating at 500—620°C to which is fed 200—3500 Hters per minute of auto engine exhaust containing relatively low concentrations of hydrocarbons, carbon monoxide, and nitrogen oxides that must be reduced significantly. Because the auto emission catalyst must operate in an environment with profound diffusion or mass-transfer limitations (51), it is apparent that only a small fraction of the catalyst s surface area can be used and that a system with the highest possible surface area is required. [Pg.198]

A fluidi2ed-bed catalytic reactor system developed by C. E. Lummus (323) offers several advantages over fixed-bed systems ia temperature control, heat and mass transfer, and continuity of operation. Higher catalyst activity levels and higher ethylene yields (99% compared to 94—96% with fixed-bed systems) are accompHshed by continuous circulation of catalyst between reactor and regenerator for carbon bum-off and continuous replacement of catalyst through attrition. [Pg.415]

While the carbon dioxide/caiistic test method has become accepted, one should use the results with caution. The chemical reaction masks the effect of physical absorption, and the relative values in the table may not hold for other cases, especially distillation applications where much of the resistance to mass transfer is in the gas phase. Background on this combination of physical and chemical absorption may Be found earher in the present section, under Absorption with Chemical Reaction. ... [Pg.1398]

With a reactive solvent, the mass-transfer coefficient may be enhanced by a factor E so that, for instance. Kg is replaced by EKg. Like specific rates of ordinary chemical reactions, such enhancements must be found experimentally. There are no generalized correlations. Some calculations have been made for idealized situations, such as complete reaction in the liquid film. Tables 23-6 and 23-7 show a few spot data. On that basis, a tower for absorption of SO9 with NaOH is smaller than that with pure water by a factor of roughly 0.317/7.0 = 0.045. Table 23-8 lists the main factors that are needed for mathematical representation of KgO in a typical case of the absorption of CO9 by aqueous mouethauolamiue. Figure 23-27 shows some of the complex behaviors of equilibria and mass-transfer coefficients for the absorption of CO9 in solutions of potassium carbonate. Other than Henry s law, p = HC, which holds for some fairly dilute solutions, there is no general form of equilibrium relation. A typically complex equation is that for CO9 in contact with sodium carbonate solutions (Harte, Baker, and Purcell, Ind. Eng. Chem., 25, 528 [1933]), which is... [Pg.2106]

FIG. 23-27 CO, in potassium carbonate solutions (<2) equilibrium in 20% solution, (h) mass-transfer coefficients in 40% solutions. (Data cited hy Kohl and Riesenfeld, Gas Purification, Gulf Fuhlishing, 1985.)... [Pg.2108]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

There are data showing that at the same contact time, but different linear velocities, there is no difference in the performance of a carbon system. It is obvious then that the effect of linear velocity on the diffusion through the film around the particle and the ratio of the magnitude of the film diffusion to the pore diffusion are the factors that determine the effects, if any, that occur. Therefore, the linear velocity cannot be ignored completely when evaluating a system. Systems at the higher linear velocity (LV) treat more liquid per volume of carbon at low-concentration levels and the mass-transfer zone (MTZ) is shorter. [Pg.308]

Even at 1,500 F, equilibrium eonstants for the first two reactions are high enough (about 10) to expect reaction to go essentially to completion except for kinetic-rate limitations. The reaction zone might be expected to be sized by volume of rabbled carbon bed, considering that the carbon gasification reactions that occur in it are governed by kinetics and are reaction-rate limited. Actually, it is sized by hearth area. The area exposed to the gases controls mass transfer of reactants from the gas phase to the carbon and heat transfer to support the endothermic reactions. [Pg.318]

Carbon dioxide gas diluted with nitrogen is passed continuously across the surface of an agitated aqueous lime solution. Clouds of crystals first appear just beneath the gas-liquid interface, although soon disperse into the bulk liquid phase. This indicates that crystallization occurs predominantly at the gas-liquid interface due to the localized high supersaturation produced by the mass transfer limited chemical reaction. The transient mean size of crystals obtained as a function of agitation rate is shown in Figure 8.16. [Pg.239]

Wachi, S. and Jones, A.G., 1991b. Effect of gas-liquid mass transfer on crystal size distribution during the batch precipitation of calcium carbonate. Chemical Engineering Science, 46, 3289-3293. [Pg.326]

The combination of ionic liquids with supercritical carbon dioxide is an attractive approach, as these solvents present complementary properties (volatility, polarity scale.). Compressed CO2 dissolves quite well in ionic liquid, but ionic liquids do not dissolve in CO2. It decreases the viscosity of ionic liquids, thus facilitating mass transfer during catalysis. The separation of the products in solvent-free form can be effective and the CO2 can be recycled by recompressing it back into the reactor. Continuous flow catalytic systems based on the combination of these two solvents have been reported [19]. This concept is developed in more detail in Section 5.4. [Pg.266]

Loop Tests Loop test installations vary widely in size and complexity, but they may be divided into two major categories (c) thermal-convection loops and (b) forced-convection loops. In both types, the liquid medium flows through a continuous loop or harp mounted vertically, one leg being heated whilst the other is cooled to maintain a constant temperature across the system. In the former type, flow is induced by thermal convection, and the flow rate is dependent on the relative heights of the heated and cooled sections, on the temperature gradient and on the physical properties of the liquid. The principle of the thermal convective loop is illustrated in Fig. 19.26. This method was used by De Van and Sessions to study mass transfer of niobium-based alloys in flowing lithium, and by De Van and Jansen to determine the transport rates of nitrogen and carbon between vanadium alloys and stainless steels in liquid sodium. [Pg.1062]

The carbon source affects oxygen demand. In penicillin production, oxygen demand for glucose is 4.9 mol 1 1 h-1. The lactose concentration is 6.7 mol 1 1 h 1, sucrose is 13.4 mol l-1 h. The yield of oxygen per mole of carbon source for CH4 is YQjC = 1.34, T0j/C for Paraffins = 1, and Y(> /c for hydrocarbon (CH20)n = 0.4. The mass transfer coefficient k,a is for gas-liquid reactions, and the film thickness where the mass transfer takes place is 8... [Pg.32]

Figure 3.11 illustrates the mass transfer coefficient for batch-grown R. rubrum and was computed with various acetate concentrations at 200 rpm agitation speed, 500 lux light intensity, and 30 °C. As the experiment progressed, there was an increase in the rate of carbon monoxide uptake in the gas phase and a gradual decrease in die partial pressure of carbon monoxide. Also, a decrease in the partial pressure of carbon monoxide was affected by acetate concentration in the culture media. The value of the slope of the straight line increased with the decrease in acetate concentrations, i.e. 2.5 to 1 g-l. The maximum mass transfer coefficient was obtained for 1 g-l 1 acetate concentration (KLa = 4.3-h 1). The decrease in mass transfer coefficient was observed with the increase in acetate concentration. This was due to acetate inhibition on the microbial cell population as acetate concentration increased in the culture media. The minimum KLa was 1.2h 1 at 3g l 1 acetate concentration. [Pg.61]

Table 3.1 shows the kinetic parameters for cell growth, rate models with or without inhibition and mass transfer coefficient calculation at various acetate concentrations in the culture media. The Monod constant value, KM, in the liquid phase depends on some parameters such as temperature, initial concentration of the carbon source, presence of trace metals, vitamin B solution, light intensity and agitation speeds. The initial acetate concentrations in the liquid phase reflected the value of the Monod constants, Kp and Kp. The average value for maximum specific growth rate (/xm) was 0.01 h. The value... [Pg.64]

Hydrodynamics and mass transfer in bubble columns are dependent on the bubble size and the bubble velocity. As the bubble is released from the sparger, it comes into contact with media and microorganisms in the column. In sugar fermentation, glucose is converted to ethanol and carbon dioxide ... [Pg.294]


See other pages where Carbonate mass transfer is mentioned: [Pg.350]    [Pg.190]    [Pg.199]    [Pg.323]    [Pg.350]    [Pg.190]    [Pg.199]    [Pg.323]    [Pg.286]    [Pg.296]    [Pg.99]    [Pg.180]    [Pg.22]    [Pg.284]    [Pg.387]    [Pg.537]    [Pg.509]    [Pg.1398]    [Pg.1399]    [Pg.1399]    [Pg.1498]    [Pg.1639]    [Pg.373]    [Pg.277]    [Pg.305]    [Pg.306]    [Pg.307]    [Pg.317]    [Pg.405]    [Pg.413]    [Pg.862]    [Pg.261]    [Pg.296]    [Pg.17]    [Pg.84]   
See also in sourсe #XX -- [ Pg.350 , Pg.351 ]




SEARCH



Carbon dioxide mass transfer process

Carbon isotope mass-transfer measurement

Carbon transfer

Mass transfer of carbon dioxide

Surface mass transfer resistance carbonation

© 2024 chempedia.info