Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics limiting rate

Because the form of the current-overpotential relations is characteristic of a kinetically limited rate (see Fig. 34), Conway and Novak 341) proposed control by a step involving recombination of discharged Cl-atoms [Eq. (164)] and deduced a critical test-plot procedure for characterizing recombination-controlled kinetics. Expressing the current density for the recombination step as... [Pg.101]

A role of microbial processes in release of arsenic into groundwater concomitant with the reductive dissolution of Fe(ni) oxyhydroxides has been suggested based on the observed correlation between dissolved arsenic and bicarbonate concentrations (94,95). Increased bicarbonate concentrations are attributed to the oxidation of organic matter with Fe(III) oxyhydroxides as the terminal electron acceptor. Like oxidative dissolution, reductive dissolution may be kinetically limited. Rates of microbial reduction may be limited by the supply (and nature) of organic carbon. [Pg.168]

The chemistry models used in VICTORIA-92 are largely based on thermodynamic equilibria however, new models have introduced kinetically limited rates to several processes. These include oxidative volatilization of UO2, tellurium-zircaloy interactions, and CsOH chemisorption onto structures. VICTORIA-92 now treats 288 chemical species composed of 26 elements. These models are described further In Section 4. [Pg.325]

Overvoltage. Overvoltage (ti. ) arises from kinetic limitations or from the inherent rate (be it slow or fast) of the electrode reaction on a given substrate. The magnitude of this value can be generally expressed in the form of the Tafel equation... [Pg.484]

In addition to electrode kinetics, the rate of an electrochemical reaction can be limited by the rate of mass transfer of reactants to and from the electrode surface. In dilute solutions, four principal equations are used. The flux of species i is... [Pg.65]

Equations (4-5) and (4-7) are alternative expressions for the estimation of the diffusion-limited rate constant, but these equations are not equivalent, because Eq. (4-7) includes the assumption that the Stokes-Einstein equation is applicable. Olea and Thomas" measured the kinetics of quenching of pyrene fluorescence in several solvents and also measured diffusion coefficients. The diffusion coefficients did not vary as t) [as predicted by Eq. (4-6)], but roughly as Tf. Thus Eq. (4-7) is not valid, in this system, whereas Eq. (4-5), used with the experimentally measured diffusion coefficients, gave reasonable agreement with measured rate constants. [Pg.136]

In Section 3-3 we discussed the problem of kinetically equivalent rate terms. Suppose one of the rate constants evaluated for such a rate equation were larger than the diffusion-limited value this is a reasonable basis upon which to reject the formulation of the rate equation leading to this result. Jencks has given examples of this argument. [Pg.136]

Many semibatch reactions involve more than one phase and are thus classified as heterogeneous. Examples are aerobic fermentations, where oxygen is supplied continuously to a liquid substrate, and chemical vapor deposition reactors, where gaseous reactants are supplied continuously to a solid substrate. Typically, the overall reaction rate wiU be limited by the rate of interphase mass transfer. Such systems are treated using the methods of Chapters 10 and 11. Occasionally, the reaction will be kinetically limited so that the transferred component saturates the reaction phase. The system can then be treated as a batch reaction, with the concentration of the transferred component being dictated by its solubility. The early stages of a batch fermentation will behave in this fashion, but will shift to a mass transfer limitation as the cell mass and thus the oxygen demand increase. [Pg.65]

A strict kinetic limitation based on the gas-phase reactant can be modeled using a variable value for h although experience shows that a first order rate expressions with n=l often provides an excellent fit to experimental data regardless of the underlying reaction mechanism. A site-competition model such as Equation (10.12) can also be used. [Pg.420]

Each of the intermediate electrochemical or chemical steps is a reaction of its own (i.e., it has its own kinetic pecnliarities and rules. Despite the fact that all steps occur with the same rate in the steady state, it is true that some steps occur readily, without kinetic limitations, and others, to the contrary, occur with limitations. Kinetic limitations that are present in electrochemical steps show up in the form of appreciable electrode polarization. It is a very important task of electrochemical kinetics to establish the nature and kinetic parameters of the intermediate steps as well as the way in which the kinetic parameters of the individual steps correlate with those of the overall reaction. [Pg.220]

When anodic polarization is appreciable AE 0), the CD will tend toward the value and then remain unchanged when polarization increases further. Therefore, parameter i, as defined by Eq. (13.44), is a limiting CD arising from the limited rate of a homogeneous chemical reaction when Cj drops to a value of zero it is the kinetic limiting current density. [Pg.232]

Determine whether the overall rate of a process is limited by a particular rate process, e.g., kinetic limitation or by diffusion, mixing, etc. [Pg.89]

As with previous kinetic applications of SECM, it should be noted that experimental measurements can be tuned to the kinetic region of interest by varying the radius of the electrode [Eq. (33)] and the separation between the tip and interface. In essence, the smaller the UME, and/or tip-interface separation, the higher the diffusion rates that may be generated and, consequently, the greater the tendency for interfacial kinetic limitations. [Pg.314]

The treatment of chemical reaction equilibria outlined above can be generalized to cover the situation where multiple reactions occur simultaneously. In theory one can take all conceivable reactions into account in computing the composition of a gas mixture at equilibrium. However, because of kinetic limitations on the rate of approach to equilibrium of certain reactions, one can treat many systems as if equilibrium is achieved in some reactions, but not in others. In many cases reactions that are thermodynamically possible do not, in fact, occur at appreciable rates. [Pg.16]

We have also measured the rate constant for the association reaction of two Mn(C0)5 radicals generated on photolysis of Mn2(CO)io- With appropriate assumptions regarding the absorption coefficient for Mn(C0)5, the rate constant for this reaction was determined to be (2.7 0.6) x 10 1 mole l s [6,10]. This is compatible with the diffusion limited rate constant for this reaction that has been measured in solution and is within an order of magnitude of a gas kinetic rate constant as would be expected for an essentially unactivated radical-radical association reaction [33a]. [Pg.97]

We believe that this type of smooth profile results from kinetic limitations. Still at C/2, the capacity with cutoff potential 0.0V vs Li/Li+ is 257mAh/g. It drops to about 151mAh/g at C rate. When compared with... [Pg.239]

In summary, polymeric flocculants generally increase peri-kinetic flocculation rates compared with perikinetic coagulation rates. This is not necessarily true for orthokinetic flocculation, and experimental results in the literature are seemingly in conflict. Collision rate theory predicts that the polymer adsorption step may become rate limiting in orthokinetic flocculation. The present study was designed to elucidate the relationship between polymer adsorption rates and particle flocculation rates under orthokinetic conditions. [Pg.431]

The performance of adsorption processes results in general from the combined effects of thermodynamic and rate factors. It is convenient to consider first thermodynamic factors. These determine the process performance in a limit where the system behaves ideally i.e. without mass transfer and kinetic limitations and with the fluid phase in perfect piston flow. Rate factors determine the efficiency of the real process in relation to the ideal process performance. Rate factors include heat-and mass-transfer limitations, reaction kinetic limitations, and hydro-dynamic dispersion resulting from the velocity distribution across the bed and from mixing and diffusion in the interparticle void space. [Pg.18]

Hence, the phenomena of the low reaction rate in the polymer matrix cannot be explained by the limiting rate of reactant orientation (rotational diffusion) in the cage. This result becomes the impetus to formulate the conception of the rigid cage of polymer matrix [16-20]. In addition to the experiments with comparison of the rate constants in the liquid phase and polymer matrix, experiments on the kinetic study of radical reactions in polymers with different amounts of introduced plasticizer were carried out [7,9,15,21], A correlation between the rate constant of the reaction k and the frequency of rotation vOT of the nitroxyl radical (2,2,6,6-tetramethyl-4-benzoyloxypiperidine-/Y-oxyI) was found. The values of the rate constants for the reaction... [Pg.651]

While there have been several studies on the synthesis of block copolymers and on the molecular weight evolution during solution as well as bulk polymerizations (initiated by iniferters), there have been only a few studies of the rate behavior and kinetic parameters of bulk polymerizations initiated by iniferters. In this paper, the kinetics and rate behavior of a two-component initiation system that produces an in situ living radical polymerization are discussed. Also, a model that incorporates the effect of diffusion limitations on the kinetic constants is proposed and used to enhance understanding of the living radical polymerization mechanism. [Pg.52]

Saturation kinetics The rate is first order with respect to A at low concentrations of A (such that KAcA 1 + MBcB), but becomes zero order at higher concentrations when KAcA 1 + AfgCg.In the high-concentration limit, all the catalytic sites are saturated with A(8a = 1), and the rate is given by the number of catalytic sites times the rate constant, k. [Pg.196]

Inhibition by one of the reactants Similar to Type I kinetics, the rate is first order in cA when KAcA 1 + KBcB + Kccc, but instead of reaching a plateau in the other limit (KAcA 1 + Kbcb + Kccc), the rate becomes inhibited by A. The limiting rate law in this case is... [Pg.196]

An alternative electrochemical method has recently been used to obtain the standard potentials of a series of 31 PhO /PhO- redox couples (13). This method uses conventional cyclic voltammetry, and it is based on the CV s obtained on alkaline solutions of the phenols. The observed CV s are completely irreversible and simply show a wave corresponding to the one-electron oxidation of PhO-. The irreversibility is due to the rapid homogeneous decay of the PhO radicals produced, such that no reverse wave can be detected. It is well known that PhO radicals decay with second-order kinetics and rate constants close to the diffusion-controlled limit. If the mechanism of the electrochemical oxidation of PhO- consists of diffusion-limited transfer of the electron from PhO- to the electrode and the second-order decay of the PhO radicals, the following equation describes the scan-rate dependence of the peak potential ... [Pg.368]

The mechanisms for the NMHCs (except DMS) required to fully characterise OH chemistry were extracted from a recently updated version of the Master Chemical Mechanism (MCM 3.0, available at http //mcm.leeds.ac.uk/MCM/). The MCM treats the degradation of 125 volatile organic compounds (VOCs) and considers oxidation by OH, NO3, and O3, as well as the chemistry of the subsequent oxidation products. These steps continue until CO2 and H2O are formed as final products of the oxidation. The MCM has been constructed using chemical kinetics data (rate coefficients, branching ratios, reaction products, absorption cross sections and quantum yields) taken from several recent evaluations and reviews or estimated according to the MCM protocol (Jenkin et al., 1997, 2003 Saunders et al., 2003). The MCM is an explicit mechanism and, as such, does not suffer from the limitations of a lumped scheme or one containing surrogate species to represent the chemistry of many species. [Pg.4]

In fact, the only kinetic limitation to such a reaction is the speed at which they move through solution before the collision that forms product. This rate is itself dictated by the speed of diffusion (which is not generally an efficient form of transport). The rate of reactants colliding is, therefore, said to be diffusion controlled . Typically, diffusion-controlled processes in which Ea is tiny involve radical intermediates. [Pg.416]


See other pages where Kinetics limiting rate is mentioned: [Pg.373]    [Pg.373]    [Pg.816]    [Pg.282]    [Pg.287]    [Pg.2313]    [Pg.277]    [Pg.566]    [Pg.44]    [Pg.649]    [Pg.303]    [Pg.165]    [Pg.485]    [Pg.72]    [Pg.432]    [Pg.230]    [Pg.207]    [Pg.76]    [Pg.205]    [Pg.186]    [Pg.307]    [Pg.579]    [Pg.301]    [Pg.277]    [Pg.237]    [Pg.26]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Chemical kinetic rate-limiting mechanisms

Dissolution kinetics rate-limiting steps

Kinetic factors rate limiting step

Kinetic rates

Kinetics limitations

Kinetics rate-limiting steps

Rate Kinetics

Rate limitations

Rate limiting

© 2024 chempedia.info