Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon molecular sieves reactor

Carbon molecular sieve membranes Resistant to contaminants Intermediate hydrogen flux and selectivity Intermediate hydrogen flux and selectivity High water permeability Pilot-scale testing in low temperature WGS membrane reactor application Need demonstration of long-term stability and durability in practical applications... [Pg.316]

Liu, P.K.T., Carbon Molecular Sieve Membrane as Reactor for Water Gas Shift Reaction, Proceedings of 2006 U.S. DOE Hydrogen Annual Merit Review Meeting, Arlington, VA, May 2006. [Pg.320]

Fig 6 shows the single-stage system, which is referred to as plasma-driven catalysis [77]. In the PDC process, catalysts arc directly placed in the NTP reactor. These catalysts arc activated by NTP at low temperature region, where the thermal catalysis docs not occur. The shape of catalyst is cither of honeycomb, foam or pellet. In contrast to the PEC system, all reactions of gas-phase, surface and their interaction lake place simultaneously. In this sense, it is quite complicate to understand and optimize the chemical reactions in the PDC system. In an early USA patent, Henis proposed a PDC reactor for NO.r removal. Figure 7 shows the schematic diagram of the PDC reactor proposed by Henis [78], which is quite similar to those used in recent studies. The gases arc introduced to the reaction zone through the contact materials for heat transfer purpose. The catalysts listed in the patent are alumina, zirconium silicate, cobalt oxide, Thoria, activated carbon, molecular sieves, silica gel etc. [Pg.16]

S. Sa, H. Silva, J. M. Sousa and A. Mendes, Hydrogen production by methanol steam reforming in a membrane reactor Palladium vs carbon molecular sieve membranes, J. Membr. Sci., 2009, 339, 160-170. [Pg.85]

Briceno, K., lufianelU, A., Montane, D., Garcia-Valls, R., Basile, A. (2012). Carbon molecular sieve membranes supported on non-modified ceramic tubes for hydrogen separation in membrane reactors. International Journal of Hydrogen Energy, 37, 13536—13544. [Pg.178]

Carbon molecular sieves were prepared from activated carbons by coke deposition from the thermal cracking of propylene. The heat treatment was carried out in a smaller diameter U-shaped fixed bed reactor made of an A inch 316 SS tube. A 2 kW vertical electric furnace was used for heating the reactor, while the design of gas flow and temperature control instruments in the activation system permitted also their use in the smaller reactor system. The... [Pg.434]

To prevent such release, off gases are treated in Charcoal Delay Systems, which delay the release of xenon and krypton, and other radioactive gases, such as iodine and methyl iodide, until sufficient time has elapsed for the short-Hved radioactivity to decay. The delay time is increased by increasing the mass of adsorbent and by lowering the temperature and humidity for a boiling water reactor (BWR), a typical system containing 211 of activated carbon operated at 255 K, at 500 K dewpoint, and 101 kPa (15 psia) would provide about 42 days holdup for xenon and 1.8 days holdup for krypton (88). Humidity reduction is typically provided by a combination of a cooler-condenser and a molecular sieve adsorbent bed. [Pg.285]

Determination of oxygen. The sample is weighed into a silver container which has been solvent-washed, dried at 400 °C and kept in a closed container to avoid oxidation. It is dropped into a reactor heated at 1060 °C, quantitative conversion of oxygen to carbon monoxide being achieved by a layer of nickel-coated carbon (see Note). The pyrolysis gases then flow into the chromatographic column (1 m long) of molecular sieves (5 x 10-8 cm) heated at 100 °C the CO is separated from N2, CH4, and H2, and is measured by a thermal conductivity detector. [Pg.248]

This carbon-carbon bond-generating reaction can be used extensively over a wide range of chemistries [11]. As the reaction is an equilibrium process, needing the removal of water to obtain high yields, chemical means have to be used to accomplish this task. 1,3-Dicyclohexylcarbodiimide (DCC) is a commonly used reagent for this purpose. Alternatively, molecular sieves find use for conventional processing, but are not so favorable for micro-reactor processing, because the sieve needs to be inserted into the micro channel (additional fabrication expenditure) and may disrupt the liquid transport if EOF is applied. [Pg.527]

A continuous-flow reactor with a fixed catalyst bed was employed at pressurized conditions. Gaseous dimethyl ether was supplied to the reactor at its vapor pressure with carbon monoxide while liquid reactants such as methyl acetate, methyl iodide, and water were fed with microfeeders. Methyl acetate used in this experiment was dehydrated by Molecular Sieve 5A before use. A part of the reaction mixture was sampled with a heated syringe and was analyzed by gas chromatography. [Pg.177]

It is a mass transfer between a mobile, solid, or liquid phase, and the adsorption bed packed in a reactor. To carry out adsorption, a reactor, where a dynamic adsorption process will occur, is packed with an adsorbent [2], The adsorbents normally used for these applications are active carbons, zeolites and related materials, silica, mesoporous molecular sieves, alumina, titanium dioxide, magnesium oxide, clays, and pillared clays. [Pg.276]

The book explores various examples of these important materials, including perovskites, zeolites, mesoporous molecular sieves, silica, alumina, active carbons, carbon nanotubes, titanium dioxide, magnesium oxide, clays, pillared clays, hydrotalcites, alkali metal titanates, titanium silicates, polymers, and coordination polymers. It shows how the materials are used in adsorption, ion conduction, ion exchange, gas separation, membrane reactors, catalysts, catalysts supports, sensors, pollution abatement, detergency, animal nourishment, agriculture, and sustainable energy applications. [Pg.501]

High pressure continuously operated reactor. The design of the continuously operated apparatus is shown in Figure 2. An air operated high pressure pump delivered CO2 in the system. The gaseous fluid was dried when passing through columns packed with molecular sieves. The flow rate of C02 was 1.0 L per min. Equimolar solution of substrates (oleic acid and oleyl alcohol) was pumped into the system with an HPLC pump. Carbon dioxide and substrates were equilibrated in the saturation column. The reaction was performed in a... [Pg.86]

The reactor was fed with 1.6 Nl/min of 1000, 2000 and 4000 ppm of methane in air. The mixtures were obtained by mixing N-50 synthetic air and 2.5 % (vol.) CH4 in N-50 synthetic air (Air Products). 40 ppm of SO2 (from a cylinder of 370 ppmV SO2 in N-50 synthetic air. Air Products) were added when the effect of sulphur on the catalysts activity was studied. Flow rates were controlled by calibrated mass flow controllers (Brooks 5850 TR). Exhaust gas was analysed by gas chromatography (Hewlett Packard HP 5890 Series II). Methane in the inlet and outlet streams was analysed using a 30 m fused silica capillary column with apolar stationary phase SE-30, and a FID detector. CO and CO2 were analysed using a HayeSep N 80/100 and a molecular sieve 45/60 columns connected in series, and a TCD detector. Neither CO, nor partial oxidation were detected in any experiment, the carbon mass balance fitting in all the cases within 2%. Methane conversions were calculated both from outlet methane and CO2 concentrations, being both values very close in all the cases. Methane (2000 ppmV) and SO2 (40 ppmV) concentrations have been selected because they are representative of industrial emissions, such as coke oven emissions. [Pg.429]


See other pages where Carbon molecular sieves reactor is mentioned: [Pg.250]    [Pg.71]    [Pg.318]    [Pg.322]    [Pg.324]    [Pg.318]    [Pg.968]    [Pg.165]    [Pg.167]    [Pg.167]    [Pg.89]    [Pg.296]    [Pg.521]    [Pg.36]    [Pg.279]    [Pg.852]    [Pg.176]    [Pg.330]    [Pg.289]    [Pg.521]    [Pg.42]    [Pg.1855]    [Pg.86]    [Pg.543]    [Pg.300]    [Pg.423]    [Pg.21]   
See also in sourсe #XX -- [ Pg.320 ]

See also in sourсe #XX -- [ Pg.320 ]




SEARCH



Carbon molecular sieves

Molecular reactors

Molecular sieves

Molecular sieving

© 2024 chempedia.info