Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon lithosphere

Under low-dose conditions, forest ecosystems act as sinks for atmospheric pollutants and in some instances as sources. As indicated in Chapter 7, the atmosphere, lithosphere, and oceans are involved in cycling carbon, nitrogen, oxygen, sulfur, and other elements through each subsystem with different time scales. Under low-dose conditions, forest and other biomass systems have been utilizing chemical compounds present in the atmosphere and releasing others to the atmosphere for thousands of years. Industrialization has increased the concentrations of NO2, SO2, and CO2 in the "clean background" atmosphere, and certain types of interactions with forest systems can be defined. [Pg.116]

Although the largest reservoirs of carbon are found in the lithosphere, the fluxes between it and the atmosphere, hydrosphere, and biosphere are small. It follows that the turnover time of carbon in the lithosphere is many orders of magnitude longer than the turnover times in any of the other reservoirs. Many of the current modeling efforts studying the partitioning of fossil fuel carbon between different reservoirs only include the three "fast" spheres the lithosphere s role in the carbon cycle has received less attention. [Pg.297]

Carbon is released from the lithosphere by erosion and resides in the oceans ca. 10 years before being deposited again in some form of oceanic sediment. It remains in the lithosphere on the average 10 years before again being released by erosion (Broecker, 1973). The amount of carbon in the ocean-atmosphere-biosphere system is maintained in a steady state by geologic processes the role of biological processes is, however, of profound importance... [Pg.297]

The carbon cycle is complicated by several reactions that involve CO2. These reactions transfer carbon between the atmosphere, the hydrosphere (Earth s surface waters), and the lithosphere (Earth s crastal solids). The processes that move carbon from one sphere to another are illustrated schematically in the figure below. [Pg.1321]

Almost all the Earth s carbon is found in the lithosphere as carbonate sediments that have precipitated from the oceans. Shells of aquatic animals also contribute CaC03 to the lithosphere. Carbon returns to the hydrosphere as carbonate minerals dissolve in water percolating through the Earth s crust. This process is limited by the solubility products for carbonate salts, so lithospheric carbonates represent a relatively inaccessible storehouse of carbon. [Pg.1322]

Olafsson M, Eggler DH (1983) Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridohte petrologic constraints on the asthenosphere. Earth Planet Sci Lett 64 305-315 Olson P, Schubert G, Anderson C, Goldman P (1988) Plume formahon and lithosphere erosion a comparison of laboratory and numerical experiments. J Geophys Res 93 15065-15084 Pearson DG, Shirey SB, Carlson RW, Boyd FR, Nixon PH (1995) Stabilisahon of Archean lithospheric manhe A Re-Os isotope isotope study of peridohte xenoliths. Earth Planet Sci Lett 134 341-357... [Pg.246]

E. L. Shock (1990) provides a different interpretation of these results he criticizes that the redox state of the reaction mixture was not checked in the Miller/Bada experiments. Shock also states that simple thermodynamic calculations show that the Miller/Bada theory does not stand up. To use terms like instability and decomposition is not correct when chemical compounds (here amino acids) are present in aqueous solution under extreme conditions and are aiming at a metastable equilibrium. Shock considers that oxidized and metastable carbon and nitrogen compounds are of greater importance in hydrothermal systems than are reduced compounds. In the interior of the Earth, CO2 and N2 are in stable redox equilibrium with substances such as amino acids and carboxylic acids, while reduced compounds such as CH4 and NH3 are not. The explanation lies in the oxidation state of the lithosphere. Shock considers the two mineral systems FMQ and PPM discussed above as particularly important for the system seawater/basalt rock. The FMQ system acts as a buffer in the oceanic crust. At depths of around 1.3 km, the PPM system probably becomes active, i.e., N2 and CO2 are the dominant species in stable equilibrium conditions at temperatures above 548 K. When the temperature of hydrothermal solutions falls (below about 548 K), they probably pass through a stability field in which CH4 and NII3 predominate. If kinetic factors block the achievement of equilibrium, metastable compounds such as alkanes, carboxylic acids, alkyl benzenes and amino acids are formed between 423 and 293 K. [Pg.191]

Zinc is the 24th most abundant element in the earth s crust. The Zn concentration in the lithosphere is 50-70 mg/kg (Vinogradoc, 1959 Adriano, 2001). Basic igneous rocks contain higher Zn (70-130 mg/kg) than metamorphic and sedimentary rocks (80 mg/kg). Carbonate and limestones contain low Zn (16-20 mg/kg) (Aubert and Pinta, 1977). The total Zn concentration in the soils of the world ranges from 10 to 300 mg/kg (Swaine, 1955), with average concentrations from 50 to 100 mg/kg (Aubert and Pinta, 1977). Arid and semi-arid soils vary from trace levels (subdesert soils) to 900 mg/kg (saline alkali soils) (Aubert and Pinta, 1977). The average Zn concentration in the arid and semi-arid soils of the U.S. (62.9 mg/kg) is... [Pg.54]

The natural cycle of carbon involves compounds of the atmosphere, hydrosphere, lithosphere, and biosphere. A certain difference in the 13C isotope content exists between the samples, depending on their origin. To estimate the deviation from the average value of 13C isotope contents 8(%o) scale is used. The deviation may be calculated by Equation 5.14 ... [Pg.166]

Indexes o and s define the ratio of the carbon isotopes in the sample and in the standard. A lithospheric carbonate material was accepted as standard. The closest to this zero point value belongs to standard sample NBS-19 (1.95%c). There are some other standard samples NBS-22 oil (—29.74%c), NBS-18 calcium carbonate (— 5.01%c). Usually 813C values for plants are in the range ( 15%o) to (— 30%c), and for oil (— 20%c) to ( 36%c). Atmospheric methane has the lowest content of 13C. Its 813C value is approximately —47%o. [Pg.166]

The elements whose isotopes are routinely measured with gas inlet mass spectrometers are carbon (12C and 13C, but not 14C), oxygen (160, 170, l80), hydrogen ( H, 2H, but not 3H), nitrogen (14N and 1SN) and sulphur (32S, 33S, 34). Stable isotopes of H, C, N, O, and S occur naturally throughout atmosphere, hydrosphere, lithosphere, and biosphere. They are atoms of the same elements with a different mass. Each element has a dominant light isotope with the nominal atomic weight (I2C, 160,14N, 32S, and H) and one or two heavy isotopes (l3C, nO, 180, 15N, 33S, 34S, and, 2H) with a natural abundance of a few percent or less Table 1). [Pg.152]

Figure 15. Diagram showing the major components of the global calcium cycle with b Ca values (denoted as 5). The modem residence time of Ca in the oceans is about 1 million years (Holland 1978 1984). Abbreviations used are SW = seawater, Sed = sedimentation, clastic = clastic sediments, carb = marine carbonate sediments, hydrol = mid-ocean ridge hydrothermal systems, lith = continental lithosphere. Figure 15. Diagram showing the major components of the global calcium cycle with b Ca values (denoted as 5). The modem residence time of Ca in the oceans is about 1 million years (Holland 1978 1984). Abbreviations used are SW = seawater, Sed = sedimentation, clastic = clastic sediments, carb = marine carbonate sediments, hydrol = mid-ocean ridge hydrothermal systems, lith = continental lithosphere.
A further assumption of the model is that liquid, solid, and gas phases are in equilibrium with one another. This assumption demands a relatively rapid and high degree of mixing of atmosphere, lithosphere, and hydrosphere. Under this assumption, the carbon dioxide content of the atmosphere may be considered constant and equal to 3.5 X 10"4 atm. [Pg.251]

Garzione CN, Molnar P, Libarkin JC, MacFadden BJ (2006) Rapid late Miocene rise of the Bolivian Altiplano Evidence for removal of mantle lithosphere. Earth Planet Sd Ixtt 241 543-556 Garzione CN, Molnar P, Libarkin JC, McFadden BJ (2007) Reply to Comment on Rapid late Miocene rise of the Bolivian Altiplano Evidence for removal of mantle lithosphere by Garzione et al. (2006), Earth Planet Sci Lett 241 (2006) 543-556. Earth Planet Sci Lett 259 630-633 Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C-lsO bonds in paleosol carbonates. Science 311 511-515... [Pg.51]

From available, though approximate, estimates, about 1023 g of carbon-containing gases are concentrated in the rocks of the Earth s crust and mantle (lithosphere) (Korstenshtein, 1984 Sokolov, 1971). This mass of carbon exceeds by approximately 104 times the amount present today in the biosphere (over the Earth surface). Between the biosphere and lithosphere there is a constant, very intensive exchange of carbon that is self-regulatory. From the data of Barenbaum (2000, 2002), due to the Le Chatelier principle (Krapivin et al., 1982), the content of mobile carbon in the system tries to attain a stable relationship ... [Pg.140]


See other pages where Carbon lithosphere is mentioned: [Pg.438]    [Pg.108]    [Pg.279]    [Pg.282]    [Pg.283]    [Pg.283]    [Pg.297]    [Pg.298]    [Pg.298]    [Pg.149]    [Pg.33]    [Pg.491]    [Pg.392]    [Pg.434]    [Pg.466]    [Pg.10]    [Pg.1414]    [Pg.54]    [Pg.85]    [Pg.92]    [Pg.93]    [Pg.146]    [Pg.160]    [Pg.160]    [Pg.243]    [Pg.246]    [Pg.258]    [Pg.297]    [Pg.13]    [Pg.447]    [Pg.521]    [Pg.548]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Lithosphere

Lithosphere carbon content

Lithosphere carbon dioxide cycle

Lithosphere/rocks carbon

© 2024 chempedia.info