Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide by water

Coppock and Meiklejohn (C9) determined liquid mass-transfer coefficients for the absorption of oxygen in water. The value of k, was observed to vary markedly with variations of bubble velocity, from 0.028 to 0.055 cm/sec for a velocity range from 22 to 28 cm/sec. These results appear to be in general agreement with the results obtained by Datta et al. (D2) and by Guyer and Pfister (G9) for the absorption of carbon dioxide by water. [Pg.111]

Grassman (G7) has proposed a simplified theoretical treatment of heat and mass transfer between two fluid phases, as, for example between a dispersed gas phase and a continuous liquid phase von Bogdandy et al. (V8) measured the rate of absorption of carbon dioxide by water and by decalin, and found that the absorption rate approximated that predicted by Grass-mann in the laminar region but was above the theoretical values in the... [Pg.111]

Jeyalakshmi, V. Mahalakshmy, R. Krishnamurthy, K. R. Viswa-nathan, B. Photocatalytic Reduction of Carbon Dioxide by Water A Step towards Sustainable Fuels and Chemicals. Mater. Sci. Forum, 2012, 734, 1-62. [Pg.26]

This second chapter devoted to Euhacteria relates to aerobic, photosynthetic prokaryote organisms - that is, those whose mechanism of photosynthesis is the reduction of carbon dioxide by water with the release of oxygen. These are the organisms that are responsible for the Earth s atmosphere as we know it, and are the ancestors of all the current and extinct eukaryote species. [Pg.141]

Trichloroethanoic acid, CCI3COOH. A crystalline solid which rapidly absorbs water vapour m.p. 58°C, b.p. 196-5" C. Manufactured by the action of chlorine on ethanoic acid at 160°C in the presence of red phosphorus, sulphur or iodine. It is decomposed into chloroform and carbon dioxide by boiling water. It is a much stronger acid than either the mono- or the dichloro-acids and has been used to extract alkaloids and ascorbic acid from plant and animal tissues. It is a precipitant for proteins and may be used to test for the presence of albumin in urine. The sodium salt is used as a selective weedkiller. [Pg.94]

But a solution of carbon dioxide in water behaves as a very weak acid since the effective dissociation constant K is given by ... [Pg.183]

Industrially, elemental nitrogen is extracted from the air by the fractional distillation of liquid air from which carbon dioxide and water have been removed. The major fractions are nitrogen, b.p. 77 K and oxygen, b.p. 90 K, together with smaller quantities of the noble gases. [Pg.208]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Formaldehyde is readily reduced to methanol by hydrogen over many metal and metal oxide catalysts. It is oxidized to formic acid or carbon dioxide and water. The Cannizzaro reaction gives formic acid and methanol. Similarly, a vapor-phase Tischenko reaction is catalyzed by copper (34) and boric acid (38) to produce methyl formate ... [Pg.491]

The use of hot gas clean-up methods to remove the sulfur and particulates from the gasified fuel increases turbine performance by a few percentage points over the cold clean-up systems. Hot gas clean-up permits use of the sensible heat and enables retention of the carbon dioxide and water vapor in the... [Pg.70]

Fuel. Natural gas is used as a primary fuel and source of heat energy throughout the iadustrialized countries for a broad range of residential, commercial, and iadustrial appHcations. The methane and other hydrocarbons react readily with oxygen to release heat by forming carbon dioxide and water through a series of kinetic steps that results ia the overall reaction,... [Pg.174]

Light or heavy magnesium carbonate is exposed to a red heat, and carbon dioxide and water are expelled leaving light or heavy magnesium oxide. The density is also influenced by the calcining temperature higher temperatures yield more compact forms. [Pg.200]

Lithium Oxide. Lithium oxide [12057-24-8], Li20, can be prepared by heating very pure lithium hydroxide to about 800°C under vacuum or by thermal decomposition of the peroxide (67). Lithium oxide is very reactive with carbon dioxide or water. It has been considered as a potential high temperature neutron target for tritium production (68). [Pg.226]

Phenols as a compound class are readily oxidi2ed by potassium permanganate and, if sufficient oxidant is added, phenol (qv) can be completely oxidi2ed into carbon dioxide and water. [Pg.522]

The common treatment methods are acidification, neutralization, and incineration. When oxahc acid is heated slightly in sulfuric acid, it is converted to carbon monoxide, carbon dioxide, and water. Reaction with acid potassium permanganate converts it to carbon dioxide. Neutralization with alkahes, such as caustic soda, yields soluble oxalates. Neutralization with lime gives practically insoluble calcium oxalate, which can be safely disposed of, for instance, by incineration. [Pg.461]

Emissions During Disposal and Incineration. The increasing use of modem incinerators to dispose of domestic waste results in complete combustion of plasticizers to carbon dioxide and water. The preponderance of plasticizer going into landfiUs is as plasticized PVC. Once a landfiU has been capped anaerobic conditions prevail and it is biologically relatively inactive. Under these conditions the main route by which organic components are removed from the landfiU contents is by ingress of water, extraction, and subsequent loss of water from the site to the environment. [Pg.132]

Ammonium bicarbonate, also known as ammonium hydrogen carbonate or ammonium acid carbonate, is easily formed. However, it decomposes below its melting point, dissociating into ammonia, carbon dioxide, and water. If this process is carefully controlled, these compounds condense to reform ammonium bicarbonate. The vapor pressures of dry ammonium bicarbonate are shown below (7). (To convert kPa to mm Hg, multiply by 7.5.)... [Pg.362]

Ammonium bicarbonate, sp gr 1.586, formula wt 79.06, is the only compound in the NH —CO2—H2O system that dissolves in water without decomposition. SolubiUty in 100 g of H2O ranges from 11.9 g at 0°C to 59.2 g/100 g of H2O at 60°C (8). The heat of formation from gaseous ammonia and carbon dioxide andUquid water is 126.5 kj/mol (30.2 kcal/mol). Ammonium bicarbonate is manufactured by passing carbon dioxide gas... [Pg.362]

Generally, cmde sulfur contains small percentages of carbonaceous matter. The amount of this impurity is usually determined by combustion, which requires an exacting technique. The carbonaceous matter is oxidized to carbon dioxide and water the carbon dioxide is subsequently absorbed (18). Automated, on-stream determination of impurities in molten sulfur has been accompHshed by infrared spectrophotometry (35). [Pg.124]

Respiratory, or oxidative, metaboHsm produces more energy than fermentation. Complete oxidation of one mol of glucose to carbon dioxide and water may produce up to 36 mol ATP in the tricarboxyHc acid (TCA) cycle or related oxidative pathways. More substrates can be respired than fermented, including pentoses (eg, by Candida species), ethanol (eg, by Saccharomjces), methanol (eg, by Hansenu/a species), and alkanes (eg, by Saccharomjces lipoljticd). [Pg.387]


See other pages where Carbon dioxide by water is mentioned: [Pg.112]    [Pg.230]    [Pg.11]    [Pg.19]    [Pg.112]    [Pg.230]    [Pg.11]    [Pg.19]    [Pg.313]    [Pg.131]    [Pg.132]    [Pg.355]    [Pg.470]    [Pg.473]    [Pg.196]    [Pg.206]    [Pg.215]    [Pg.218]    [Pg.933]    [Pg.17]    [Pg.64]    [Pg.360]    [Pg.457]    [Pg.457]    [Pg.161]    [Pg.172]    [Pg.341]    [Pg.363]    [Pg.369]    [Pg.482]    [Pg.30]    [Pg.200]    [Pg.192]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Carbonated waters

Dioxide - Water

Water carbon dioxide

Water carbon)

© 2024 chempedia.info