Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon canister control

The key components in the fuel vapor control system include the fuel tank, vapor vent valves, vapor control valve, vapor tubing, the activated carbon canister, and the engine vapor management valve (VMV) [25,26], During normal vehicle operation, fuel tank vapor pressure is relieved through the use of vapor vent valves installed in the vapor dome of the fuel tank. The vent valves are designed to allow for the flow of fuel vapor from the tank, and to assure that liquid fuel does not pass through the valve. [Pg.245]

The vapor vent valves are connected to the tank vapor control valve, and ultimately to the carbon canister by tubing that is resistant to swelling in the presence of fuel vapors. The tubing material must also have a low HC permeation rate, so that the evaporative emissions are not increased due to release of HC molecules. The tank vapor control valve connects the carbon canister to two fuel tank vapor sources the vapor vent valve lines and a refueling vent tube. [Pg.245]

Fuel system components involved in the refueling process include the fuel tank, filler pipe, filler cap, vapor control valve, liquid-vapor discriminator (LVD) valve, and the carbon canister [27,28]. During vehicle refueling, which is monitored during the integrated refueling test as outlined in Fig. 1, the following operations occur in the evaporative emission control system ... [Pg.246]

As initially discussed in Section 3, carbon canisters are used in the automotive emission control system to temporarily store hydrocarbon vapors. The vapors are later purged into the air charge stream of the air induction system, thus regenerating the carbon canister. Carbon canister design is dependent on the characteristics of the vapors sent to the canister and the amount of purge air available. In the following section, factors that affect the performance of the evaporative emission control system will be discussed. [Pg.252]

The use of activated carbon canisters in the control of running loss evaporative emissions will be presented through the use of an example vehicle application. In this example, the vehicle to be studied is a representative standard size sedan equipped with a 3.0 liter, V6 engine and a 72 liter (18 gallon) fuel tank. The vehicle is assumed to have an evaporative emission control system similar to the one presented in Section 3. [Pg.257]

The two liter carbon canister does not exhibit the HC release during the run loss portion of the test, nor does it release more than the allowable level of HC during the three day diumals. Thus, for the given vehicle configuration and the level of purge volume obtained by the vehicle, it is clear that a two liter carbon canister is required for this vehicle to pass the EPA certification requirement. This conclusion has an effect on the cost of the evaporative control system, in that the additional activated carbon volume and canister size will have an added cost, as will any additional hardware required to mount the larger canister on the vehicle. [Pg.259]

The design of activated carbon canisters for evaporative emission control is... [Pg.265]

The carbon canisters lack instrumentation and controls therefore, the carbon could become overloaded unless it is carefully monitored. Fluctuating or less-than-design airflow rates could cause the carbon to form channels, reducing the effective capacity of the canister. [Pg.281]

In the United States, measures to control the levels of automobile emissions and therefore of photochemical smog have become sophisticated since the first federal Clean Air Act of 1967. Modifications to the ICE have been extensive and included various redesigns of the combustion chamber, variations in the air-to-fuel ratio, reformulations of the composition of gasoline, the addition of the positive crankcase ventilation (PCV) valve to recirculate exhaust and underoxidized fuel gases through the combustion chambers, and the addition of carbon canisters that temporarily collect and then recirculate evaporated fuel from the gas tank and the fuel system. Some of these modifications have not always worked out as well as envisioned. For example, the 1990 modification to the Clean Air Act called for the addition of oxygenated... [Pg.487]

In air conditioning (qv) of closed spaces, a wider latitude in design features can be exercised (23,24). Blowers are used to pass room or cabin air through arrays of granules or plates. Efficiencies usuaHy are 95% or better. The primary limiting factor is the decreased rate of absorption of carbon dioxide. However, an auxHiary smaH CO2 sorption canister can be used. Control of moisture entering the KO2 canister extends the life of the chemical and helps maintain the RQ at 0.82. [Pg.487]

Evaporative emissions from the fuel tank and carburetor have been controlled on all 1971 and later model automobiles sold in the United States. This has been accomplished by either a vapor recovery system which uses the crankcase of the engine for the storage of the hydrocarbon vapors or an adsorption and regeneration system using a canister of activated carbon to trap the vapors and hold them until such time as a fresh air purge through the canister carries the vapors to the induction system for burning in the combustion chamber. [Pg.524]


See other pages where Carbon canister control is mentioned: [Pg.246]    [Pg.284]    [Pg.245]    [Pg.251]    [Pg.257]    [Pg.266]    [Pg.272]    [Pg.278]    [Pg.245]    [Pg.251]    [Pg.257]    [Pg.284]    [Pg.14]    [Pg.14]    [Pg.284]    [Pg.452]    [Pg.275]    [Pg.388]    [Pg.96]    [Pg.535]    [Pg.535]    [Pg.1598]    [Pg.237]    [Pg.258]    [Pg.44]    [Pg.535]   
See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.257 ]




SEARCH



Canister

Carbon canister

© 2024 chempedia.info