Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbamoylation with ureas

One of the first phosgene-free transformations for the preparation of carbamoyl chlorides was, surprisingly, accomplished with urea. Heating aniline hydrochloride 133 with urea at 370 °C resulted in phenylcarbamoyl chloride 134 [90]. [Pg.74]

Recently, we have isolated the urea derivative of glucose, V-carbamoyl-P-D-glucopyranosylamine (glucose ureide), from human urine. We hypothesise that carbonyls react with urea in vivo to form urea derivatives, including ureides, which are then excreted as urinary constituents. In this experiment, we have developed a systematic approach for detection of urinary carbonyls in order to verify the in vivo modification of carbonyls with urea. [Pg.194]

The carbamoyl chloride formed may then be decomposed more or less simultaneously with the intial phosgene-amine reaction to produce diisocyanate. A urea may be formed as the result of side reactions. [Pg.780]

The ureas, e.g. 28 (R = NMe2), derived from the corresponding 2-(l-arylviny )benzylamines by reaction with (dimethylamino)carbamoyl chloride (Me2NCOCl) in the presence of triethyl-amine, undergo cyclization in refluxing phosphoryl chloride to the 5-aryl-3-(dimethylamino)-l//-2-benzazepin-3-amines. e.g. 29a.84 Prepared similarly are the 3-(4-methylpiperazin-l-yl) compound 29b and the 3-methyl derivative 29c from the corresponding urea and amide, respectively. [Pg.215]

The activity of carbamoyl phosphate synthase I is determined by A -acetylglutamate, whose steady-state level is dictated by its rate of synthesis from acetyl-CoA and glutamate and its rate of hydrolysis to acetate and glutamate. These reactions are catalyzed by A -acetylglu-tamate synthase and A -acetylglutamate hydrolase, respectively. Major changes in diet can increase the concentrations of individual urea cycle enzymes 10-fold to 20-fold. Starvation, for example, elevates enzyme levels, presumably to cope with the increased production... [Pg.247]

Amides [41,44], thioamides [41 ] and amidines [45] are converted into nitriles by the reaction with dichlorocarbenes generated by Makosza s procedure (Table 7.16). Under similar conditions, monosubstituted and A.A-disubstituted ureas are converted into cyanamides (Table 7.17) JV,(V -disubstituted ureas produce carbodi-imides in low yield [41,46,47]. /V-Carbamoyl derivatives of dibenzo[/ /]diazepines and the related 10, l l-oxirane derivatives are converted into the corresponding... [Pg.353]

The ammonia liberated by GLDH does not itself enter the urea cycle it must first be combined with carbon dioxide to form carbamoyl phosphate. This is an energy (ATP) consuming reaction ... [Pg.179]

Pyrimidines are synthesized de novo in the cytoplasm from aspartate, COj, and glutamine as shown in Figure 1-18-2. Synthesis involves a cytoplasmic carbamoyl phosphate synthetase that differs from the mitochondrial enzyme with the same name used in the urea cycle. [Pg.266]

Only a few important representatives of the non-proteinogenic amino acids are mentioned here. The basic amino acid ornithine is an analogue of lysine with a shortened side chain. Transfer of a carbamoyl residue to ornithine yields citrulline. Both of these amino acids are intermediates in the urea cycle (see p.l82). Dopa (an acronym of 3,4-dihydroxy-phenylalanine) is synthesized by hydroxyla-tion of tyrosine. It is an intermediate in the biosynthesis of catecholamines (see p.352) and of melanin. It is in clinical use in the treatment of Parkinson s disease. Selenocys-teine, a cysteine analogue, occurs as a component of a few proteins—e.g., in the enzyme glutathione peroxidase (see p.284). [Pg.62]

Several lines of investigation assert to the inability of canal ine to function as an effective ornithine antagonist. Ornithine interaction with canaline has been evaluated with the ornithine carbamoyl transferase (EC 2.1.3.3) of human liver. Neither canal ine nor ornithine inhibited this enzyme when the other member of this set served as the carbamoyl group recipient (29). The ornithine antagonist, 2,4-diaminobutyric acid drastically reduced urea production in the rat this reflected curtailment of the ornithine carbamoyl transferase-mediated conversion of ornithine to citrulline. Yet, canaline had no such effect on urea formation in this mammal (30). [Pg.288]

Secondary amines react with phosgene to give carbamoyl chlorides [43] which, on treatment of excess secondary or primary amine or ammonia, yields an asymmetric urea [44-46],... [Pg.330]

The carbamoyl phosphate, which functions as an activated carbamoyl group donor, now enters the urea cycle. The cycle has four enzymatic steps. First, carbamoyl phosphate donates its carbamoyl group to ornithine to form citrulline, with the release of Pj (Fig. 18-10, step ). Ornithine plays a role resembling that of oxaloacetate in the citric acid cycle, accepting material at each turn of the cycle. The reaction is catalyzed by ornithine transcarbamoylase, and the citrulline passes from the mitochondrion to the cytosol. [Pg.667]

Ammonia is highly toxic to animal tissues. In the urea cycle, ornithine combines with ammonia, in the form of carbamoyl phosphate, to form citrulline. A second amino group is transferred to citrulline from aspartate to form arginine—the immediate precursor of urea. Arginase catalyzes hydrolysis of arginine to urea and ornithine thus ornithine is regenerated in each turn of the cycle. [Pg.671]

Formation of citrulline Ornithine and citrulline are basic amino acids that participate in the urea cycle. [Note They are not incorporated into cellular proteins, because there are no codons for these amino acids (see p. 429).] Ornithine is regenerated with each turn of the urea cycle, much in the same way that oxaloacetate is regenerated by the reactions of the citric acid cycle (see p 109). The release of the high-energy phosphateof carbamoyl phosphate as inorganic phosphate drives the reaction in the forward direction. The reaction product, citrulline, is trans ported to the cytosol. [Pg.251]

Metabolism of nitrogen in a patient with a deficiency in the urea cycle enzyme carbamoyl phosphate synthetase I. Treatment with phenylbutyrate converts nitrogenous waste to a form that can be excreted. [Pg.256]

Carbamoyl phosphate synthetases. The first of the individual steps in the urea cycle is the formation of carbamoyl phosphate.163 Carbon dioxide and ammonia equilibrate spontaneously with carbamic acid ... [Pg.1376]

Resin-bound triazenes with a free NH group can be acylated by treatment with acyl halides, or carbamoylated by treatment with isocyanates [342]. The resulting triazene derivatives are stable towards strong bases, but undergo acidolysis when treated with TFA or TMSC1, yielding amides and ureas, respectively (Entries 1 and 2, Table 3.16). Polystyrene-bound triazenes devoid of a free NH group or carbamates can be cleaved from the support by treatment with acyl halides to yield amides (Entries 3 and 4, Table 3.16). [Pg.75]

Appropriately substituted hydroxy amides and ureas can be used instead of diamines. Thus, acid-catalyzed cyclocondensation of iV-carbamoyl prolinols 137 (R1 = H, (CH2)3) (Scheme 27) with aldehydes RCHO (R = Ph, 2-MeOC6H4, 2-naphthyl, etc.) stereoselectively afforded a series of pyrroldine-fused oxadiazepinones 46 (Scheme 5) <1990CPB2627, 1990H(30)287, 1996LA927>. Similar heterocyclization of 4-(2-hydroxyethylthio)-2-azetidinone with acetone dimethyl acetal was used in the synthesis of azetidinone-fused oxathiazepanes of type 33 (X = S) (Figure 4) <1980JA2039>. [Pg.510]


See other pages where Carbamoylation with ureas is mentioned: [Pg.13]    [Pg.816]    [Pg.265]    [Pg.114]    [Pg.406]    [Pg.222]    [Pg.718]    [Pg.164]    [Pg.160]    [Pg.689]    [Pg.164]    [Pg.107]    [Pg.179]    [Pg.246]    [Pg.212]    [Pg.154]    [Pg.425]    [Pg.448]    [Pg.645]    [Pg.526]    [Pg.81]    [Pg.546]    [Pg.225]    [Pg.1376]    [Pg.1376]    [Pg.1378]    [Pg.595]    [Pg.114]    [Pg.375]    [Pg.376]    [Pg.519]    [Pg.544]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Carbamoyl

Carbamoyls

With urea

© 2024 chempedia.info