Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Capsule microcapsule

These two seemingly dissimilar applications have a common basis—both are examples of the pressure-sensitive release of a chemical. How are these products designed Tiny spherical capsules (microcapsules or microspheres) with a glass or polymer shell are filled with a liquid core and glued onto paper. For a scratch-and-sniff ad, the core of the microcapsules contains a liquid with the desired scent for carbonless paper, a liquid ink or dye is encapsulated within the... [Pg.211]

The so-called multinucleus-type capsules/ microcapsules are essentially agglomerated particles with prescribed released characteristics, which can be controlled by the concentration and solubility of the binder. In agglomeration, the amount of binder is kept to a minimum, as long as the agglomerates are... [Pg.189]

Edible coatings cannot be typically considered packages bnt rather physical food protecting barriers, which can additionally act as carriers of active and/or bioactive substances and controlled release of flavor molecules, giving them an added-valne. Edible film can carry active components, snch as flavors and other food additives, in the form of hard capsules, soft gel capsules, microcapsules, soluble strips, flexible pouches, coatings on hard particles, and others. ... [Pg.1442]

Many terms have been used to describe the contents of a microcapsule active agent, actives, core material, fill, internal phase (IP), nucleus, and payload. Many terms have also been used to describe the material from which the capsule is formed carrier, coating, membrane, shell, or wall. In this article the material being encapsulated is called the core material the material from which the capsule is formed is called the shell material. [Pg.317]

Table 1 Hsts representative examples of capsule shell materials used to produce commercial microcapsules along with preferred appHcations. The gelatin—gum arabic complex coacervate treated with glutaraldehyde is specified as nonedible for the intended appHcation, ie, carbonless copy paper, but it has been approved for limited consumption as a shell material for the encapsulation of selected food flavors. Shell material costs vary greatly. The cheapest acceptable shell materials capable of providing desired performance are favored, however, defining the optimal shell material for a given appHcation is not an easy task. Table 1 Hsts representative examples of capsule shell materials used to produce commercial microcapsules along with preferred appHcations. The gelatin—gum arabic complex coacervate treated with glutaraldehyde is specified as nonedible for the intended appHcation, ie, carbonless copy paper, but it has been approved for limited consumption as a shell material for the encapsulation of selected food flavors. Shell material costs vary greatly. The cheapest acceptable shell materials capable of providing desired performance are favored, however, defining the optimal shell material for a given appHcation is not an easy task.
Microcapsules can have a wide range of geometries and stmctures. Figure 1 illustrates three possible capsule stmctures. Parameters used to characteri2e microcapsules include particle size, size distribution, geometry, actives content, storage stabiHty, and core material release rate. [Pg.317]

Fig. 1. Schematic diagrams of several possible capsule stmctures (a) continuous core/sheU microcapsule in which a single continuous sheU surrounds a continuous region of core material (b) multinuclear microcapsule in which a number of small domains of core material are distributed uniformly throughout a matrix of sheU material and (c) continuous core capsule with two different sheUs. Fig. 1. Schematic diagrams of several possible capsule stmctures (a) continuous core/sheU microcapsule in which a single continuous sheU surrounds a continuous region of core material (b) multinuclear microcapsule in which a number of small domains of core material are distributed uniformly throughout a matrix of sheU material and (c) continuous core capsule with two different sheUs.
Classification of the many different encapsulation processes is usehil. Previous schemes employing the categories chemical or physical are unsatisfactory because many so-called chemical processes involve exclusively physical phenomena, whereas so-called physical processes can utilize chemical phenomena. An alternative approach is to classify all encapsulation processes as either Type A or Type B processes. Type A processes are defined as those in which capsule formation occurs entirely in a Hquid-filled stirred tank or tubular reactor. Emulsion and dispersion stabiUty play a key role in determining the success of such processes. Type B processes are processes in which capsule formation occurs because a coating is sprayed or deposited in some manner onto the surface of a Hquid or soHd core material dispersed in a gas phase or vacuum. This category also includes processes in which Hquid droplets containing core material are sprayed into a gas phase and subsequentiy solidified to produce microcapsules. Emulsion and dispersion stabilization can play a key role in the success of Type B processes also. [Pg.318]

Complex Coacervation. This process occurs ia aqueous media and is used primarily to encapsulate water-iminiscible Hquids or water-iasoluble soHds (7). In the complex coacervation of gelatin with gum arabic (Eig. 2), a water-iasoluble core material is dispersed to a desired drop size ia a warm gelatin solution. After gum arabic and water are added to this emulsion, pH of the aqueous phase is typically adjusted to pH 4.0—4.5. This causes a Hquid complex coacervate of gelatin, gum arabic, and water to form. When the coacervate adsorbs on the surface of the core material, a Hquid complex coacervate film surrounds the dispersed core material thereby forming embryo microcapsules. The system is cooled, often below 10°C, ia order to gel the Hquid coacervate sheU. Glutaraldehyde is added and allowed to chemically cross-link the capsule sheU. After treatment with glutaraldehyde, the capsules are either coated onto a substrate or dried to a free-flow powder. [Pg.318]

A key feature of encapsulation processes (Figs. 4a and 5) is that the reagents for the interfacial polymerisation reaction responsible for shell formation are present in two mutually immiscible Hquids. They must diffuse to the interface in order to react. Once reaction is initiated, the capsule shell that forms becomes a barrier to diffusion and ultimately begins to limit the rate of the interfacial polymerisation reaction. This, in turn, influences morphology and uniformity of thickness of the capsule shell. Kinetic analyses of the process have been pubHshed (12). A drawback to the technology for some apphcations is that aggressive or highly reactive molecules must be dissolved in the core material in order to produce microcapsules. Such molecules can react with sensitive core materials. [Pg.320]

Microcapsules are used in several film coatings other than carbonless paper. Encapsulated Hquid crystal formulations coated on polyester film are used to produce a variety of display products including thermometers. Polyester film coated with capsules loaded with leuco dyes analogous to those used in carbonless copy paper is used as a means of measuring line and force pressures (79). Encapsulated deodorants that release their core contents as a function of moisture developed because of sweating represent another commercial appHcation. Microcapsules are incorporated in several cosmetic creams, powders, and cleansing products (80). [Pg.325]

A majority of the fasteners used in automobiles in the United States are coated with microcapsules loaded with an adhesive. When the fastener is installed, a fraction of the capsules in the coating mpture releasing the adhesive payload. The adhesive essentially glues the fasteners in place preventing them from becoming loose and causing rattles. The capsules are designed so that only a fraction of them break each time a fastener is taken off and put back. The on/off cycle can be repeated three or four times. [Pg.325]

Carbonless Copy Paper. In carbonless copy paper, also referred to as pressure-sensitive record sheet, an acid-sensitive dye precursor, such as crystal violet lactone or /V-hen2oy11eucomethy1ene blue, is microencapsulated with a high boiling solvent or oil within a cross-linked gelatin (76,83,84) or in synthetic mononuclear microcapsules. Microcapsules that have a starch binder are coated onto the back of the top sheet. This is referred to as a coated-back (CB) sheet. The sheet intended to receive the image is treated on the front (coated-front (CF)) with an acid. When the top sheet is mechanically impacted, the dye capsules mpture and the dye solution is transferred to the receiving sheet where the acid developer activates the dye. [Pg.304]

In addition to a block copolymer, a microcapsule was made from suspension interfacial polycondensation between diacid chloride having aromatic-aliphatic azo group and aliphatic triamine [70,71]. The capsule was covered with a crosslinked structure having an azo group that was thermally stable but sensitive to light so as to be applicable to color photoprinting materials. [Pg.763]

An electron microscope image of a drug capsule as it bursts open, revealing the tiny microcapsules inside. The image has been digitally colored. [Pg.466]

The resulting enzyme-containing microcapsules (which can contain different enzymes in different capsules, as was the case here) were then embedded within a Ca-alginate bead, designated a capsules-in-bead structured microreactor (Scheme 5.7). [Pg.141]

Scheme 5.7 Encapsulation of enzyme microcapsules into a gel-like structure (host gel bead) resulting in a capsules-in-bead microreactor. Reproduced from [20] by permission of The Royal Society of Chemistry. Scheme 5.7 Encapsulation of enzyme microcapsules into a gel-like structure (host gel bead) resulting in a capsules-in-bead microreactor. Reproduced from [20] by permission of The Royal Society of Chemistry.
Recently, we proposed an alternative process for encapsulating biomacromolecules within PE microcapsules. This approach involves using nanoporous particles as sacrificial templates for both enzyme immobilization and PE multilayer capsule formation (Figure 7.2, route (I)) [66,67]. Unlike previous LbL encapsulation strategies, this approach is not limited to species that undergo crystallization, and is not dependent upon adjustments in electrostatic interactions within PE microcapsules to alter shell permeability characteristics. The salient feature of this method is that it is applicable to a wide range of materials for encapsulation. [Pg.214]

The pore size and distribution in the porous particles play essential roles in NPS synthesis. For example, only hollow capsules are obtained when MS spheres with only small mesopores (<3 nm) are used as the templates [69]. This suggests that the PE has difficulty infiltrating mesopores in this size range, and is primarily restricted to the surface of the spheres. The density and homogeneity of the pores in the sacrificial particles is also important to prepare intact NPSs. In a separate study, employing CaC03 microparticles with radial channel-like pore structures (surface area 8.8 m2 g 1) as sacrificial templates resulted in PE microcapsules that collapse when dried, which is in stark contrast to the free-standing NPSs described above [64]. [Pg.225]

It is enough to visit the clean, small production plant of Sol-Gel Technologies in Israel (Figure 8.3) to recognize that most of the value added to benzoyl peroxide entrapped in microcapsules comes from knowledge—and thus from human ingenuity—which originates the production of the microcapsules. The price at which the white water-based capsule formulation is sold to customers exceeds more than 1000 times the price of the raw materials used to prepare it. Put another way ... [Pg.177]


See other pages where Capsule microcapsule is mentioned: [Pg.52]    [Pg.190]    [Pg.43]    [Pg.52]    [Pg.190]    [Pg.43]    [Pg.223]    [Pg.319]    [Pg.321]    [Pg.322]    [Pg.322]    [Pg.322]    [Pg.323]    [Pg.324]    [Pg.325]    [Pg.325]    [Pg.91]    [Pg.518]    [Pg.284]    [Pg.173]    [Pg.60]    [Pg.157]    [Pg.218]    [Pg.219]    [Pg.247]    [Pg.277]    [Pg.1]    [Pg.31]    [Pg.52]    [Pg.55]    [Pg.1095]    [Pg.165]    [Pg.210]   
See also in sourсe #XX -- [ Pg.640 ]




SEARCH



Microcapsules

© 2024 chempedia.info