Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calorimetric effects

The calorimetric studies of the surface heterogeneity of oxides were initiated half a century ago, and experimental findings as well as their theoretical interpretation have been recently reviewed by Rudzinski and Everett [2]. The last two decades have brought a true Renaissance of adsorption calorimetry. A new generation of fully automatized and computerized microcalorimeters has been developed, far more accurate and easy to manipulate. This was stimulated by the still better recognized fact that calorimetric data are much more sensitive to the nature of an adsorption system than adsorption isotherm for instance. It is related to the fact that calorimetric effects are related to temperature derivatives of appropriate thermodynamic functions, and tempearture appears generally... [Pg.357]

The most frequently carried out measurements are those of adsorption isotherm but they are rarely accompanied by direct measurements of accompanying calorimetric effects. [Pg.377]

Rudziriski. W. et al., Calorimetric effects and temperature dependence of simple ion adsorption at oxide/electrolyte interfaces The systems in which PZC and CIP do not coincide, J. Colloid Interf. Sci.. 226, 353, 2000. [Pg.939]

Remark.- It can be noted that diffusion steps in solid phases are included neither with the numerator, because they do not lead to a mass change, nor with the denominator, because diffusion does not involve calorimetric effect... [Pg.389]

Stem layer adsorption was involved in the discussion of the effect of ions on f potentials (Section V-6), electrocapillary behavior (Section V-7), and electrode potentials (Section V-8) and enters into the effect of electrolytes on charged monolayers (Section XV-6). More speciflcally, this type of behavior occurs in the adsorption of electrolytes by ionic crystals. A large amount of wotk of this type has been done, partly because of the importance of such effects on the purity of precipitates of analytical interest and partly because of the role of such adsorption in coagulation and other colloid chemical processes. Early studies include those by Weiser [157], by Paneth, Hahn, and Fajans [158], and by Kolthoff and co-workers [159], A recent calorimetric study of proton adsorption by Lyklema and co-workers [160] supports a new thermodynamic analysis of double-layer formation. A recent example of this is found in a study... [Pg.412]

Other properties of association colloids that have been studied include calorimetric measurements of the heat of micelle formation (about 6 kcal/mol for a nonionic species, see Ref. 188) and the effect of high pressure (which decreases the aggregation number [189], but may raise the CMC [190]). Fast relaxation methods (rapid flow mixing, pressure-jump, temperature-jump) tend to reveal two relaxation times t and f2, the interpretation of which has been subject to much disagreement—see Ref. 191. A fast process of fi - 1 msec may represent the rate of addition to or dissociation from a micelle of individual monomer units, and a slow process of ti < 100 msec may represent the rate of total dissociation of a micelle (192 see also Refs. 193-195). [Pg.483]

Randzio S L 1994 Calorimetric determination of pressure effects Solution Calorimetry, Experimental Thermodynamics vol IV, ed K N Marsh and PAG O Hare (Oxford Blackwell)... [Pg.1920]

PuUy hydroly2ed poly(vinyl alcohol) and iodine form a complex that exhibits a characteristic blue color similar to that formed by iodine and starch (171—173). The color of the complex can be enhanced by the addition of boric acid to the solution consisting of iodine and potassium iodide. This affords a good calorimetric method for the deterrnination of poly(vinyl alcohol). Color intensity of the complex is effected by molecular weight, degree of... [Pg.481]

In specific reference to the heat effects in chemical reactions, hundreds of different reactions have been studied calorimetrically. The results are always in accord with the Law of Additivity of Reaction Heats. If we assign a characteristic heat content to each chemical substance, then all of these experiments support the Law of Conservation of Energy. Since the Law of Conservation of Energy is consistent with so many different reactions, it can be safely assumed to apply to a reaction which hasn t been studied before. [Pg.117]

The authors of [99] proposed a calorimetric method for determining the degree of the polymer-filler interaction the exothermal effect manifests itself in the high energy of the polymer-filler adhesion, the endothermal effect is indicative of a poor, if any, adhesion. The method was used to assess the strength of the PVC-Aerosil interaction with Aerosil surface subjected to different pre-treatments... [Pg.11]

Polymerization thermodynamics has been reviewed by Allen and Patrick,323 lvin,JM [vin and Busfield,325 Sawada326 and Busfield/27 In most radical polymerizations, the propagation steps are facile (kp typically > 102 M 1 s l -Section 4.5.2) and highly exothermic. Heats of polymerization (A//,) for addition polymerizations may be measured by analyzing the equilibrium between monomer and polymer or from calorimetric data using standard thermochemical techniques. Data for polymerization of some common monomers are collected in Table 4.10. Entropy of polymerization ( SP) data are more scarce. The scatter in experimental numbers for AHp obtained by different methods appears quite large and direct comparisons are often complicated by effects of the physical state of the monomei-and polymers (i.e whether for solid, liquid or solution, degree of crystallinity of the polymer). [Pg.213]

Use the Third Law to calculate the standard entropy, S°nV of quinoline (g) p — 0.101325 MPa) at T= 298,15 K. (You may assume that the effects of pressure on all of the condensed phases are negligible, and that the vapor may be treated as an ideal gas at a pressure of 0.0112 kPa, the vapor pressure of quinoline at 298.15 K.) (c) Statistical mechanical calculations have been performed on this molecule and yield a value for 5 of quinoline gas at 298.15 K of 344 J K l mol 1. Assuming an uncertainty of about 1 j K 1-mol 1 for both your calculation in part (b) and the statistical calculation, discuss the agreement of the calorimetric value with the statistical... [Pg.198]

The calorimetric method of detecting EEPs is based on measurements of the thermal effect arising on surfaces featuring high efficiency of deexcitation. This technique was used for evaluating 02( A ) [31] of a... [Pg.295]

Hexa(hydroxyethyl)pararosaniline nitrile has been used in a chemical radiochromic dosimeter.130 Ferricyanide oxidation of leuco Crystal Violet to Crystal Violet dye finds use in detection of various heavy metals131 at trace quantities. Oxidation of leuco triphenylmethanes by chloramine-T is catalyzed by iodide and therefore is used for detection of iodide.132 On the other hand, the inhibition of the catalytic effect of iodide by some ions can be used for determining traces of Ag(I), Hg(II), Pd(II). In addition, the triphenylmethane leuco dyes, phenolphthalein or phenol red are used extensively as indicators in calorimetric and titrimetric determinations. [Pg.154]

Castelli, F., S. Caruso, and N. Giuffrida. 1999. Different effects of two structurally similar carotenoids, lutein and beta-carotene, on the thermotropic behaviour of phosphatidylcholine liposomes. Calorimetric evidence of their hindered transport through biomembranes. Thermochim. Acta 327 125-131. [Pg.27]

In this section we deal with the first of the physical effects which impinge on reactivity — the influences which heats of reaction and bond dissociation energies have on the course of chemical reactions. Both heats of reaction and bond dissociation energies are enthalpy values that are experimentally determined by thermochemical methods, in the first case usually by direct calorimetric methods, in the second by more indirect techniques 22). [Pg.41]

All heat evolutions which occur simultaneously, in a similar manner, in both twin calorimetric elements connected differentially, are evidently not recorded. This particularity of twin or differential systems is particularly useful to eliminate, at least partially, from the thermograms, secondary thermal phenomena which would otherwise complicate the analysis of the calorimetric data. The introduction of a dose of gas into a single adsorption cell, containing no adsorbent, appears, for instance, on the calorimetric record as a sharp peak because it is not possible to preheat the gas at the exact temperature of the calorimeter. However, when the dose of gas is introduced simultaneously in both adsorption cells, containing no adsorbent, the corresponding calorimetric curve is considerably reduced. Its area (0.5-3 mm2, at 200°C) is then much smaller than the area of most thermograms of adsorption ( 300 mm2), and no correction for the gas-temperature effect is usually needed (65). [Pg.232]

Mason JT, O Leary TJ. Effects of formaldehyde fixation on protein secondary structure a calorimetric and infrared spectroscopic investigation. J. Histochem. Cytochem. 1991 39 225-229. [Pg.194]


See other pages where Calorimetric effects is mentioned: [Pg.359]    [Pg.381]    [Pg.280]    [Pg.137]    [Pg.199]    [Pg.359]    [Pg.381]    [Pg.280]    [Pg.137]    [Pg.199]    [Pg.1718]    [Pg.1904]    [Pg.1918]    [Pg.1264]    [Pg.41]    [Pg.25]    [Pg.210]    [Pg.195]    [Pg.555]    [Pg.186]    [Pg.198]    [Pg.555]    [Pg.295]    [Pg.354]    [Pg.420]    [Pg.23]    [Pg.26]    [Pg.177]    [Pg.187]    [Pg.214]   
See also in sourсe #XX -- [ Pg.66 , Pg.68 ]




SEARCH



Calorimetric

© 2024 chempedia.info