Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium mechanisms

Ca/NH3, ether or THE, 2 h NH4CI, H2O. 90% yield. Acetylenes are not reduced under these conditions. One problem with the use of calcium is that the oxide coating makes it difficult to initiate the reaction. This is partially overcome by adding sand to the reaction mixture to abrade the surface of the calcium mechanically. [Pg.81]

Pumiliotoxin B potentiated and prolonged muscle contractions in chick neuromuscular preparations and inhibited chick calcium-dependent ATPase 26). Remarkably, in muscles from a dystrophic strain of chicks, pumiliotoxin B had no effect neither on contractions nor on the calcium-dependent ATPase. Thus, in confirmation of other data, calcium mechanisms appear aberrant in the dystrophic muscles of this strain of chicks. [Pg.314]

Calcium complex soap greases, obtained by the reaction of lime and a mixture of fatty acids and acetic acid. These greases offer good high temperature and anti-wear/extreme pressure properties related to the presence, in the soap, of calcium acetate that acts as solid lubricant they have good mechanical stability. [Pg.281]

By treatment with anhydrous aluminium chloride (Holmes and Beeman, 1934). Ordinary commercial, water-white benzene contains about 0 05 per cent, of thiophene. It is first dried with anhydrous calcium chloride. One litre of the dry crude benzene is shaken vigorously (preferably in a mechanical shaking machine) with 12 g. of anhydrous aluminium chloride for half an hour the temperature should preferably be 25-35°. The benzene is then decanted from the red liquid formed, washed with 10 per cent, sodium hydroxide solution (to remove soluble sulphur compounds), then with water, and finally dried over anhydrous calcium chloride. It is then distilled and the fraction, b.p. 79-5-80-5°, is collected. The latter is again vigorously shaken with 24 g. of anhydrous aluminium chloride for 30 minutes, decanted from the red liquid, washed with 10 per cent, sodium hydroxide solution, water, dried, and distilled. The resulting benzene is free from thiophene. [Pg.173]

Allyl Bromide. Introduce into a 1-litre three-necked flask 250 g. (169 ml.) of 48 per cent, hydrobromic acid and then 75 g. (40-5 ml.) of concentrated sulphuric acid in portions, with shaking Anally add 58 g. (68 ml.) of pure allyl alcohol (Section 111,140). Fit the flask with a separatory funnel, a mechanical stirrer and an efficient condenser (preferably of the double surface type) set for downward distillation connect the flask to the condenser by a wide (6-8 mm.) bent tube. Place 75 g. (40 5 ml.) of concentrated sulphuric acid in the separatory funnel, set the stirrer in motion, and allow the acid to flow slowly into the warm solution. The allyl bromide will distil over (< 30 minutes). Wash the distillate with 5 per cent, sodium carbonate solution, followed by water, dry over anhydrous calcium chloride, and distil from a Claisen flask with a fractionating side arm or through a short column. The yield of allyl bromide, b.p. 69-72°, is 112 g. There is a small high-boiling fraction containing propylene dibromide. [Pg.280]

In a 1-litre three-necked flask, mounted on a steam bath and provided respectively with a separatory funnel, mechanical stirrer and double surface condenser, place 165 g. of bromoform (96 per cent.). Add 10 ml. of a solution of sodium arsenite made by dissolving 77 g. of A.R. arsenious oxide and 148 g. of A.R. sodium hydroxide in 475 ml. of water. Warm the mixture gently to start the reaction, and introduce the remainder of the sodium arsenite solution during 30-45 minutes at such a rate that the mixture refluxes gently. Subsequently heat the flask on the steam bath for 3-4 hours. Steam distil the reaction mixture (Fig. 11, 41, 1) and separate the lower layer of methylene bromide (79 g.). Extract the aqueous layer with about 100 ml. of ether a further 3 g. of methylene bromide is obtained. Dry with 3-4 g. of anhydrous calcium chloride, and distil from a Claisen flask with fractionating side arm. The methylene bromide boils constantly at 96-97° and is almost colourless. [Pg.300]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

Into a 500 ml. three-necked flask, provided with a mechanical stirrer, a gas inlet tube and a reflux condenser, place 57 g. of anhydrous stannous chloride (Section 11,50,11) and 200 ml. of anhydrous ether. Pass in dry hydrogen chloride gas (Section 11,48,1) until the mixture is saturated and separates into two layers the lower viscous layer consists of stannous chloride dissolved in ethereal hydrogen chloride. Set the stirrer in motion and add 19 5 g. of n-amyl cyanide (Sections III,112 and III,113) through the separatory funnel. Separation of the crystalline aldimine hydrochloride commences after a few minutes continue the stirring for 15 minutes. Filter oflF the crystalline solid, suspend it in about 50 ml. of water and heat under reflux until it is completely hydrolysed. Allow to cool and extract with ether dry the ethereal extract with anhydrous magnesium or calcium sulphate and remove the ether slowly (Fig. II, 13, 4, but with the distilling flask replaced by a Claisen flask with fractionating side arm). Finally, distil the residue and collect the n-hexaldehyde at 127-129°. The yield is 19 g. [Pg.324]

Prepare a solution containing about 100 g, of potassium hypochlorite from commercial calcium hypochlorite ( H.T.H. ) as detailed under -Dimethylacrylic Acid, Section 111,142, Note 1, and place it in a 1500 ml. three-necked flask provided with a thermometer, a mechanical stirrer and a reflux condenser. Warm the solution to 55° and add through the condenser 85 g, of p-acetonaphthalene (methyl p-naphthyl ketone) (1). Stir the mixture vigorously and, after the exothermic reaction commences, maintain the temperature at 60-70° by frequent cooling in an ice bath until the temperature no longer tends to rise (ca. 30 minutes). Stir the mixture for a further 30 minutes, and destroy the excess of hypochlorite completely by adding a solution of 25 g. of sodium bisulphite in 100 ml. of water make sure that no hypochlorite remains by testing the solution with acidified potassium iodide solution. Cool the solution, transfer the reaction mixture to a 2-litre beaker and cautiously acidify with 100 ml. of concentrated hydrochloric acid. Filter the crude acid at the pump. [Pg.766]

Equip a 3 litre three-necked flask with a thermometer, a mercury-sealed mechanical stirrer and a double-surface reflux condenser. It is important that all the apparatus be thoroughly dry. Place 212 g. of trimethylene dibromide (Section 111,35) and 160 g. of ethyl malonate (Section 111,153) (dried over anhydrous calcium sulphate) in the flask. By means of a separatory funnel, supported in a retort ring and fitted into the top of the condenser with a grooved cork, add with stirring a solution of 46 g. of sodium in 800 ml. of super dry ethyl alcohol (Section 11,47,5) (I) at such a rate that the temperature of the reaction mixture is maintained at 60-65° (50-60 minutes). When the addition is complete, allow the mixture to stand until the temperature falls to 50-55°, and then heat on a water bath until a few drops of the liquid when added to water are no longer alkaline to phenolphthalein (about 2 hours). Add sufficient water to dissolve the precipitate of sodium bromide, and remove the alcohol by distillation from a water bath. Arrange the flask for steam distillation (Fig. this merely involves... [Pg.858]

In a 500 ml. bolt-head flask provided with a thermometer (reaching almost to the bottom) and a calcium chloride (or cotton wool) guard tube, place 100 g. of a-bromo-wo-valerj l bromide and 50 g. of dry, finely-divided urea. Start the reaction by warming the flask on a water bath the temperature soon rises to about 80°. Maintain this temperature for about 3 horns the mass will liquefy and then resolidify. Transfer the sticky reaction product to a large beaker containing saturated sodium bicarbonate solution, stir mechanically and add more saturated sodium bicarbonate solution in small quantities until effervescence ceases. Filter at the pump, suck as dry as possible and dry the crude bromural upon filter paper in the air. RecrystaUise the dry product from toluene. Alternatively, recrystaUise the moist product from hot water (ca. 700 ml.). The yield of pure brommal, m.p. 154-155°, is 28 g. [Pg.999]

Ethyl phenylethylmalonate. In a dry 500 ml. round-bottomed flask, fitted with a reflux condenser and guard tube, prepare a solution of sodium ethoxide from 7 0 g. of clean sodium and 150 ml. of super dry ethyl alcohol in the usual manner add 1 5 ml. of pure ethyl acetate (dried over anhydrous calcium sulphate) to the solution at 60° and maintain this temperature for 30 minutes. Meanwhile equip a 1 litre threenecked flask with a dropping funnel, a mercury-sealed mechanical stirrer and a double surface reflux condenser the apparatus must be perfectly dry and guard tubes should be inserted in the funnel and condenser respectively. Place a mixture of 74 g. of ethyl phenylmalonate and 60 g. of ethyl iodide in the flask. Heat the apparatus in a bath at 80° and add the sodium ethoxide solution, with stirring, at such a rate that a drop of the reaction mixture when mixed with a drop of phenolphthalein indieator is never more than faintly pink. The addition occupies 2-2 -5 hoius continue the stirring for a fiuther 1 hour at 80°. Allow the flask to cool, equip it for distillation under reduced pressure (water pump) and distil off the alcohol. Add 100 ml. of water to the residue in the flask and extract the ester with three 100 ml. portions of benzene. Dry the combined extracts with anhydrous magnesium sulphate, distil off the benzene at atmospheric pressure and the residue under diminished pressure. C ollect the ethyl phenylethylmalonate at 159-160°/8 mm. The yield is 72 g. [Pg.1004]

Initial Run. - Into each of seven stoppered bottles was placed a mixture of ethyl sulphate [Et0-S02-0Et] (120 g.) and sodium nitrite [NaNOJ solution (120 g. in 160 c.c. of water.) The bottles were shaken mechanically for 20 hours, the pressure being released at intervals. The contents were then poured into a separating funnel, and the upper layer separated, dried over calcium chloride and distilled at 14mm., the distillate up to 60° being col-... [Pg.277]

Apparatus 3-1 round-bottomed, three-necked flask, provided with a dropping funnel, a mechanical stirrer and a reflux condenser, cooled with dry-ice and acetone (cold finger). The upper end of this condenser was connected with a drying tube filled with anhydrous calcium chloride. [Pg.123]

Apparatus 500-ral three-necked, round-bottomed flask, provided with a dropping funnel, a gas-tight mechanical stirrer and an efficient reflux condenser a trap and a tube filled with anhydrous calcium chloride were placed between the condenser and the water pump in such a way that during the reaction the vapour of the product entered the large annular space of the trap (see Exp. 24) the drying tube was placed between the trap and the water pump. [Pg.144]

Calcium sulfate, CaS04 2H2O—0.03N mechanically stir 10 g in a liter of water for 3 hours decant and use the clear liquid. [Pg.1189]


See other pages where Calcium mechanisms is mentioned: [Pg.109]    [Pg.59]    [Pg.109]    [Pg.59]    [Pg.136]    [Pg.283]    [Pg.341]    [Pg.173]    [Pg.176]    [Pg.189]    [Pg.251]    [Pg.299]    [Pg.301]    [Pg.351]    [Pg.358]    [Pg.468]    [Pg.491]    [Pg.498]    [Pg.517]    [Pg.538]    [Pg.541]    [Pg.570]    [Pg.572]    [Pg.679]    [Pg.732]    [Pg.746]    [Pg.815]    [Pg.827]    [Pg.830]    [Pg.863]    [Pg.875]    [Pg.879]    [Pg.931]    [Pg.962]    [Pg.1002]    [Pg.1011]   
See also in sourсe #XX -- [ Pg.33 , Pg.114 , Pg.115 , Pg.116 ]

See also in sourсe #XX -- [ Pg.358 , Pg.359 , Pg.360 , Pg.361 , Pg.362 ]




SEARCH



Calcium and its role in the activation mechanism

Calcium and the mechanism of contraction

Calcium cell signaling mechanism

Calcium channel blockers mechanism of action

Calcium fluoride mechanical properties

Calcium flux mechanisms

Calcium homeostasis mechanism

Calcium messenger system mechanism

Calcium reabsorption, renal, mechanism

Calcium regulatory mechanisms

Calcium-dependent hydrolases mechanism

Gating mechanisms calcium channels

Hardening mechanism in lead-calcium alloys

Lead-calcium alloys mechanical properties

Lead-calcium-tin alloys mechanical properties

Mechanical properties calcium carbonate reinforcement

Mechanically calcium content

NR-based calcium carbonate mechanical properties

Polymer/calcium carbonate (CaCO mechanical properties

Some Aspects of Calcium-Regulatory Mechanisms

The Calcium Homeostatic Mechanism

© 2024 chempedia.info