Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate seawater

In a similar vein, mean seawater temperatures can be estimated from the ratio of 0 to 0 in limestone. The latter rock is composed of calcium carbonate, laid down from shells of countless small sea creatures as they die and fall to the bottom of the ocean. The ratio of the oxygen isotopes locked up as carbon dioxide varies with the temperature of sea water. Any organisms building shells will fix the ratio in the calcium carbonate of their shells. As the limestone deposits form, the layers represent a chronological description of the mean sea temperature. To assess mean sea temperatures from thousands or millions of years ago, it is necessary only to measure accurately the ratio and use a precalibrated graph that relates temperatures to isotope ratios in sea water. [Pg.351]

The key difference between the brine process and seawater process is the precipitation step. In the latter process (Fig. 6) the seawater is first softened by a dding small amounts of lime to remove bicarbonate and sulfates, present as MgSO. Bicarbonate must be removed prior to the precipitation step to prevent formation of insoluble calcium carbonate. Removal of sulfates prevents formation of gypsum, CaS02 2H20. Once formed, calcium carbonate and gypsum cannot be separated from the product. [Pg.347]

The selection of boiler-water treatment is also dependent on the type of cooling water. When cooling water reaches the boiler, various compounds precipitate before others. For instance, seawater contains considerable magnesium chloride. When the magnesium precipitates as the hydroxide, hydrochloric acid remains. In some lake waters, calcium carbonate is a significant impurity. When it reaches the boiler, carbon dioxide is driven off in the... [Pg.362]

Obtaining maximum performance from a seawater distillation unit requires minimising the detrimental effects of scale formation. The term scale describes deposits of calcium carbonate, magnesium hydroxide, or calcium sulfate that can form ia the brine heater and the heat-recovery condensers. The carbonates and the hydroxide are conventionally called alkaline scales, and the sulfate, nonalkaline scale. The presence of bicarbonate, carbonate, and hydroxide ions, the total concentration of which is referred to as the alkalinity of the seawater, leads to the alkaline scale formation. In seawater, the bicarbonate ions decompose to carbonate and hydroxide ions, giving most of the alkalinity. [Pg.241]

The kinetics of the formation of the magnesium hydroxide and calcium carbonate are functions of the concentration of the bicarbonate ions, the temperature, and the rate of release of CO2 from the solution. At temperatures up to 82°C, CaCO predominates, but as the temperature exceeds 93°C, Mg(OH)2 becomes the principal scale. Thus, ia seawater, there is a coasiderable teadeacy for surfaces to scale with an iacrease ia temperature. [Pg.241]

Seawater Distillation. The principal thermal processes used to recover drinking water from seawater include multistage flash distillation, multi-effect distillation, and vapor compression distillation. In these processes, seawater is heated, and the relatively pure distillate is collected. Scale deposits, usually calcium carbonate, magnesium hydroxide, or calcium sulfate, lessen efficiency of these units. Dispersants such as poly(maleic acid) (39,40) inhibit scale formation, or at least modify it to form an easily removed powder, thus maintaining cleaner, more efficient heat-transfer surfaces. [Pg.151]

An increase in carbonate-ion concentration moves the equilibrium in favour of calcium carbonate deposition. Thus one secondary effect of cathodic protection in seawater is the production of OH , which favours the production of CO, , which in turn promotes the deposition of CaCOj. Cathodically protected surfaces in seawater will often develop an aragonite (CaCOj) film. This film is commonly referred to as a calcareous deposit. [Pg.129]

Fig. 14.20). Magnesium occurs in seawater and as the mineral dolomite, CaCOyMgCO,. Calcium also occurs as CaCO in compressed deposits of the shells of ancient marine organisms and exoskeletons of tiny one-celled organisms these deposits include limestone, calcite, and chalk (a softer variety of calcium carbonate). [Pg.713]

Russell AD, Emerson S, Mix AC, Peterson LC (1996) The use of foraminiferal U/Ca as an indicator of changes in seawater uranium content. Paleoceanography 11 649-663 Rutherford E, Soddy F (1902) The cause and nature of radioactivity Part 11. Phil Mag Ser 6 4 569-585 Sacked WM (1960) Protactnium-231 content of ocean water and sediments. Science 132 1761-1762 Sacked WM (1958) Ionium-uranium ratios in marine deposited calcium carbonates and related materials. [Pg.404]

Much building material has been derived from two monomineral sedimentary rocks gypsum (composed of hydrated calcium sulfate) and limestone, which consists of calcite (composed mostly of calcium carbonate). Freshwater and seawater contain dissolved calcium carbonate and calcium sulfate. Most limestone and gypsum are formed when, as a consequence of the evaporation of water, calcium sulfate and calcium carbonate precipitate out of the water solutions as either gypsum or limestone. Limestone is also formed as a result of the activity of living organisms. Many sea- and freshwater animals, such as snails, clams, and corals, as well as some water plants, draw... [Pg.164]

The basic constituent of seashells is calcium carbonate, an insoluble compound formed from calcium ions secreted from the cells of the shellfish and carbonate ions present in seawater. But calcium carbonate is a white solid. The colors of seashells often arise from impurities and metabolic waste products captured in the solid shell as it is formed. Coloration is dictated by both diet and water habitat. For example, some cowries that live and feed on soft corals take on the hue of the coral species. Yellow and red colors often arise from carotenoid pigments such as //-carotene. Light refraction often generates the iridescent mother-of-pearl hues. [Pg.51]

The insolubility of calcium carbonate is clearly evident from the value of the solubility product, Ksp, in water at 25°C Ksp = 8.7 x 10-9. The carbonate ions are produced in seawater by the dissociation of carbonic acid that forms from the... [Pg.51]

Tsunogai and Nozaki [6] analysed Pacific Oceans surface water by consecutive coprecipitations of polonium with calcium carbonate and bismuth oxychloride after addition of lead and bismuth carriers to acidified seawater samples. After concentration, polonium was spontaneously deposited onto silver planchets. Quantitative recoveries of polonium were assumed at the extraction steps and plating step. Shannon et al. [7], who analysed surface water from the Atlantic Ocean near the tip of South Africa, extracted polonium from acidified samples as the ammonium pyrrolidine dithiocarbamate complex into methyl isobutyl ketone. They also autoplated polonium onto silver counting disks. An average efficiency of 92% was assigned to their procedure after calibration with 210Po-210Pb tracer experiments. [Pg.345]

The results are shown in Figures 6-5 and 6-6. Figure 6-5 depicts how the system evolves from its initial conditions to a repeatable oscillation about annual average conditions. This evolution is clearest for the calcium ion concentration, which rises toward twice the seawater value. Calcium does not quite reach twice the seawater value because it is removed from the system by the precipitation of calcium carbonate. The rise in calcium is a consequence of the evaporative concentration of the water s dissolved constituents. [Pg.91]

Figure 8-2 shows the depth profiles of the saturation index omegadel), the solution rate, and the respiration rate. At the shallowest depths, the saturation index changes rapidly from its supersaturated value at the sediment-water interface, corresponding to seawater values of total dissolved carbon and alkalinity, to undersaturation in the top layer of sediment. Corresponding to this change in the saturation index is a rapid and unresolved variation in the dissolution rate. Calcium carbonate is precipitating... [Pg.156]

Figure 8-10 shows the first 200 years of evolution of the concentrations at the same depths as plotted in Figure 8-9. The concentrations of both total carbon and calcium at a 500-centimeter depth decrease at first and then increase. This decrease occurs because I used starting values equal to seawater values. The waters were initially supersaturated and started out by precipitating calcium carbonate. This initial precipitation was overwhelmed at the shallower depths by the rapid addition of carbon as a result of respiration. Figure 8-10 shows the first 200 years of evolution of the concentrations at the same depths as plotted in Figure 8-9. The concentrations of both total carbon and calcium at a 500-centimeter depth decrease at first and then increase. This decrease occurs because I used starting values equal to seawater values. The waters were initially supersaturated and started out by precipitating calcium carbonate. This initial precipitation was overwhelmed at the shallower depths by the rapid addition of carbon as a result of respiration.
Berner, R.A. Morse, J.M. 1974. Dissolution kinetics of calcium carbonate in seawater. IV. Theory of calcite dissolution, American Journal of Science, 274,108-134. [Pg.62]

Reference materials that represent the primary deep-sea and coastal depositional environments and biological materials would solve many of the problems that radiochemists face in analysis of sediments from these settings. Radiochemists require reference materials comprising the primary end member sediment and biological types (calcium carbonate, opal, and red clay from the deep-sea and carbonate-rich, silicate-rich, and clay mineral-rich sediments from coastal environments and representative biological materials). Additional sediment reference material from a river delta would be valuable to test the release of radionuclides that occurs as riverine particles contact seawater. [Pg.87]

The calcium carbonate shells of marine microfauna are a large repository of terrestrial calcium and constitute a potential record of changes in the cycling of calcium at and near the earth s surface (Zhu and MacDougall 1998 De La Rocha and DePaolo 2000 Schmitt et al. 2003a,b). To understand the record held in deep sea carbonate sediments, it is necessary to document any Ca isotopic fractionation that occurs between dissolved seawater Ca and carbonate shell material. [Pg.271]

Many chemical reactions in seawater do not achieve equilibrium. The most notable are ones that involve marine organisms. Since organisms require energy, they cannot survive if their constituent biochemicals are at equilibrium. Equilibrium is also not likely to be achieved if some other process is adding or removing a chemical faster than equilibrium can be reattained. For example, calcium carbonate shells should spontaneously dissolve in deep ocean water, but some sink so fest that they can reach the sediments where they eventually become buried and, hence, preserved. In other words, the equilibrium approach is most applicable to reactions that attain equilibrium fester than any other competing processes acting on the chemical of interest. [Pg.110]

The saturation state of seawater can be used to predict whether detrital calcite and aragonite are thermodynamically favored to survive the trip to the seafloor and accumulate in surfece sediments. Any PIC or sedimentary calcium carbonate exposed to undersaturated waters should spontaneously dissolve. Conversely, PIC and sedimentary calcium carbonate in contact with saturated or supersaturated waters will not spontaneously dissolve. Typical vertical trends in the degree of saturation of seawater with respect to calcite and aragonite are shown in Figure 15.11 for two sites, one... [Pg.394]

In contrast to calcium carbonate, all seawater is undersaturated with respect to BSi. As shown in Table 16.1, the imdersaturation is very large and increases with depth because the solubility of BSi increases with pressure. Thus, all siliceous hard parts are subject to dissolution. Nevertheless, about 25% of the BSi created in the surfece waters survives the trip to the seafloor via pelagic sedimentation. Direct observations of this transport... [Pg.409]

Because warm surface seawater is usually supersaturated with respect to calcium carbonate, abiogenic precipitation of calcite and aragonite does occur, at least when supersaturations are very high. These conditions are limited to shallow water where temperatures can get sufficiently high, namely coastal tropical seas. [Pg.468]


See other pages where Calcium carbonate seawater is mentioned: [Pg.238]    [Pg.238]    [Pg.165]    [Pg.151]    [Pg.151]    [Pg.289]    [Pg.378]    [Pg.82]    [Pg.239]    [Pg.341]    [Pg.231]    [Pg.345]    [Pg.90]    [Pg.151]    [Pg.151]    [Pg.156]    [Pg.169]    [Pg.179]    [Pg.14]    [Pg.398]    [Pg.408]    [Pg.33]    [Pg.261]    [Pg.265]    [Pg.373]    [Pg.392]    [Pg.403]    [Pg.512]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Calcium carbonate

Calcium seawater

Seawater carbonate

© 2024 chempedia.info