Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

By Iron Catalysts

Compared with the heme proteins discussed in Section 2.2, the non-heme iron proteins presented here have a much more flexible coordination geometry. Taken together with the differences in electronic properties - heme enzymes contain mostly low-spin iron whereas non-heme enzymes contain mostly a high-spin iron - this is responsible for the more diverse chemistry found for the non-heme iron proteins. The great versatility of these enzymes makes them a treasure trove for the development of iron-based catalysts. Inspired by their biological archetypes, numerous catalytic reactions await to be reproduced by iron catalysts in organic synthesis. [Pg.46]

A third example is the water-gas-shift reaction catalysed by iron catalysts. The active phase is an intermediate iron oxide (Fe304), distinctly different from the manufactured catalyst (Fe203). So, mild reduction should be carried out. In optimising the pretreatment procedure it should be realized that over-reduction is to be avoided because of the danger of carbon deposition and methane formation (highly exothermic). It has been found that a well-controlled reduction in a H2/H2O mixture is possible, whereas the use of H2 and steam separately should be avoided. [Pg.526]

Moreover, Tyr-fragment may be involved in substrate hydrogen binding in step of 02-activation by iron catalyst, and this can decrease the oxygenation rate of the substrate, as it is assumed in the case of homoproto-catechuate 2,3-dioxygenase. ... [Pg.88]

Scheme 2 Intramolecular hydroxyalkoxylation catalyzed by iron catalyst... Scheme 2 Intramolecular hydroxyalkoxylation catalyzed by iron catalyst...
Where E is appreciable, adsorption rates may be followed by ordinary means. In a rather old but still informative study, Scholten and co-workers [130] were able to follow the adsorption of N2 on an iron catalyst gravimetrically, and reported the rate law... [Pg.706]

Tubular Fixed-Bed Reactors. Bundles of downflow reactor tubes filled with catalyst and surrounded by heat-transfer media are tubular fixed-bed reactors. Such reactors are used most notably in steam reforming and phthaUc anhydride manufacture. Steam reforming is the reaction of light hydrocarbons, preferably natural gas or naphthas, with steam over a nickel-supported catalyst to form synthesis gas, which is primarily and CO with some CO2 and CH. Additional conversion to the primary products can be obtained by iron oxide-catalyzed water gas shift reactions, but these are carried out ia large-diameter, fixed-bed reactors rather than ia small-diameter tubes (65). The physical arrangement of a multitubular steam reformer ia a box-shaped furnace has been described (1). [Pg.525]

Oxidation of sulfur dioxide in aqueous solution, as in clouds, can be catalyzed synergistically by iron and manganese (225). Ammonia can be used to scmb sulfur dioxide from gas streams in the presence of air. The product is largely ammonium sulfate formed by oxidation in the absence of any catalyst (226). The oxidation of SO2 catalyzed by nitrogen oxides was important in the eady processes for manufacture of sulfuric acid (qv). Sulfur dioxide reacts with chlorine or bromine forming sulfuryl chloride or bromide [507-16 ]. [Pg.144]

The uv—hydrogen peroxide system has advantages over the iron—hydrogen peroxide (Fenton s reagent) procedures, eg, the reaction is not limited to an acid pH range and the iron catalyst and resulting sludges are eliminated. However, the system to date is not effective for dye wastewaters because of absorption of uv by colored effluent. [Pg.383]

Most commercial liquid ammonia contains up to several ppm of colloidal iron compounds, possibly the iron oxide catalyst commonly used in manufacturing ammonia. Reduction converts these compounds to colloidal iron which strongly catalyzes the reaction between alcohols and sodium and potassium. The reaction of lithium with alcohols is also catalyzed by iron but to a markedly lesser degree. The data in Table 1-4 illustrate the magnitude of these catalytic effects. The data of Table 1-5 emphasize how less than 1 ppm... [Pg.20]

Basically, tliere are two classes of anunonia converters, tubular and multiple bed. The tubular bed reactor is limited in capacity to a maximum of about 500 tons/day. In most reactor designs, the cold inlet synthesis gas flows tlirough an annular space between the converter shell and tlie catalyst cartridge. This maintains the shell at a low temperature, minimizing the possibility of hydrogen embrittlement, which can occur at normal synthesis pressures. The inlet gas is then preheated to syntliesis temperature by the exit gas in an internal heat e.xchaiiger, after which it enters tlie interior of the anunonia converter, which contains tlie promoted iron catalyst. [Pg.261]

Remaining trace quantities of CO (which would poison the iron catalyst during ammonia synthesis) are converted back to CH4 by passing the damp gas from the scmbbers over a Ni methanation catalyst at 325° CO -t- 3H2, CRt -t- H2O. This reaction is the reverse of that occurring in the primary steam reformer. The synthesis gas now emerging has the approximate composition H2 74.3%, N2 24.7%, CH4 0.8%, Ar 0.3%, CO 1 -2ppm. It is compressed in three stages from 25 atm to 200 atm and then passed over a promoted iron catalyst at 380-450°C ... [Pg.421]

Reduction of unsaturated aldehydes seems more influenced by the catalyst than is that of unsaturated ketones, probably because of the less hindered nature of the aldehydic function. A variety of special catalysts, such as unsupported (96), or supported (SJ) platinum-iron-zinc, plalinum-nickel-iron (47), platinum-cobalt (90), nickel-cobalt-iron (42-44), osmium (<55), rhenium heptoxide (74), or iridium-on-carbon (49), have been developed for selective hydrogenation of the carbonyl group in unsaturated aldehydes. None of these catalysts appears to reduce an a,/3-unsaturated ketonic carbonyl selectively. [Pg.71]

The ability of iron(III) chloride genuinely to catalyze Friedel-Crafts acylation reactions has also been recognized by Holderich and co-workers [97]. By immobilizing the ionic liquid [BMIM]Cl/FeCl3 on a solid support, Holderich was able to acetylate mesitylene, anisole, and m-xylene with acetyl chloride in excellent yield. The performance of the iron-based ionic liquid was then compared with that of the corresponding chlorostannate(II) and chloroaluminate(III) ionic liquids. The results are given in Scheme 5.1-67 and Table 5.1-5. As can be seen, the iron catalyst gave superior results to the aluminium- or tin-based catalysts. The reactions were also carried out in the gas phase at between 200 and 300 °C. The acetylation reac-... [Pg.207]

The cyclodimerization of 1,3-butadiene was carried out in [BMIM][BF4] and [BMIM][PF(3] with an in situ iron catalyst system. The catalyst was prepared by reduction of [Fe2(NO)4Cl2] with metallic zinc in the ionic liquid. At 50 °C, the reaction proceeded in [BMIM][BF4] to give full conversion of 1,3-butadiene, and 4-vinyl-cyclohexene was formed with 100 % selectivity. The observed catalytic activity corresponded to a turnover frequency of at least 1440 h (Scheme 5.2-24). [Pg.251]

Fischer Tropsch synthesis is catalyzed by a variety of transition metals such as iron, nickel, and cobalt. Iron is the preferred catalyst due to its higher activity and lower cost. Nickel produces large amounts of methane, while cobalt has a lower reaction rate and lower selectivity than iron. By comparing cobalt and iron catalysts, it was found that cobalt promotes more middle-distillate products. In FTS, cobalt produces... [Pg.124]

Dr. Moeller We have done this, and we compared an iron catalyst used for the Fischer-Tropsch plant and a nickel catalyst used in the methanation plant. By the same x-ray techniques, we found no nickel carbide on the used methanation catalyst, but we did find iron carbide on the used Fischer-Tropsch catalyst. [Pg.174]

Dr. Moeller In our plant, we investigated our catalyst after 4000 and 5000 hrs of operation and we found no trace of iron on our catalysts. But we know that if you take no precautions against iron carbonyl formation, then you will destroy some part of your activity by iron deposition on your catalyst. And we found that the iron carbonyl is formed mainly at the mild steel tube walls or at the tube in the temperature range of 150°-200°C. So, if you enter this range and you have to heat up your gas, which has a high CO content and steam in it, you have to... [Pg.174]

The Industrial Revolution was made possible by iron in the form of steel, an alloy used for construction and transportation. Other d-block metals, both as the elements and in compounds, are transforming our present. Copper, for instance, is an essential component of some superconductors. Vanadium and platinum are used in the development of catalysts to reduce pollution and in the continuing effort to make hydrogen the fuel of our future. [Pg.776]

Abstract Organic syntheses catalyzed by iron complexes have attracted considerable attention because iron is an abundant, inexpensive, and environmentally benign metal. It has been documented that various iron hydride complexes play important roles in catalytic cycles such as hydrogenation, hydrosilylation, hydro-boration, hydrogen generation, and element-element bond formation. This chapter summarizes the recent developments, mainly from 2000 to 2009, of iron catalysts involving hydride ligand(s) and the role of Fe-H species in catalytic cycles. [Pg.27]

Hydrogenation of substrates having a polar multiple C-heteroatom bond such as ketones or aldehydes has attracted significant attention because the alcohols obtained by this hydrogenation are important building blocks. Usually ruthenium, rhodium, and iridium catalysts are used in these reactions [32-36]. Nowadays, it is expected that an iron catalyst is becoming an alternative material to these precious-metal catalysts. [Pg.35]

C-C and C-E (E = heteroatom) bond formations are valuable reactions in organic synthesis, thus these reactions have been achieved to date by considerable efforts of a large number of chemists using a precious-metal catalysts (e.g., Ru, Rh, and Pd). Recently, the apphcation range of iron catalysts as an alternative for rare and expensive transition-metal catalysts has been rapidly expanded (for recent selected examples, see [12-20, 90-103]). In these reactions, a Fe-H species might act as a reactive key intermediate but also represent a deactivated species, which is prepared by p-H elimination. [Pg.52]

A mechanistic proposal, which is based on the mthenium-catalyzed dehydration reaction reported by Nagashima and coworkers [146], is shown in Scheme 44. Reaction of a primary amine with hydrosilane in the presence of the iron catalyst affords the bis(silyl)amine a and 2 equiv. of H2. Subsequently, the isomerization of a gives the A,0-bis(silyl)imidate b and then elimination of the disiloxane from b produces the corresponding nitrile. Although the disiloxane and its monohydrolysis product were observed by and Si NMR spectroscopy and by GC-Mass-analysis, intermediates a and b were not detected. [Pg.59]


See other pages where By Iron Catalysts is mentioned: [Pg.377]    [Pg.378]    [Pg.479]    [Pg.373]    [Pg.377]    [Pg.378]    [Pg.479]    [Pg.373]    [Pg.93]    [Pg.727]    [Pg.2698]    [Pg.111]    [Pg.181]    [Pg.163]    [Pg.164]    [Pg.164]    [Pg.278]    [Pg.275]    [Pg.70]    [Pg.488]    [Pg.339]    [Pg.518]    [Pg.291]    [Pg.292]    [Pg.137]    [Pg.20]    [Pg.35]    [Pg.321]    [Pg.80]    [Pg.869]    [Pg.263]    [Pg.337]   


SEARCH



Brookharts iron catalyst showing disruption of the catalytic cycle by ethanol

By iron

Iron, catalyst

© 2024 chempedia.info