Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butyraldehyde, hydroformylation

Ans Ethylene a-alkenes (oligomerization), acetaldehyde (oxidation) propylene n-butyraldehyde (hydroformylation), propylene oxide (epoxidation) CO acetic acid, acetic anhydride (carbonylation). [Pg.19]

Rhodium Ca.ta.lysts. Rhodium carbonyl catalysts for olefin hydroformylation are more active than cobalt carbonyls and can be appHed at lower temperatures and pressures (14). Rhodium hydrocarbonyl [75506-18-2] HRh(CO)4, results in lower -butyraldehyde [123-72-8] to isobutyraldehyde [78-84-2] ratios from propylene [115-07-17, C H, than does cobalt hydrocarbonyl, ie, 50/50 vs 80/20. Ligand-modified rhodium catalysts, HRh(CO)2L2 or HRh(CO)L2, afford /iso-ratios as high as 92/8 the ligand is generally a tertiary phosphine. The rhodium catalyst process was developed joindy by Union Carbide Chemicals, Johnson-Matthey, and Davy Powergas and has been Hcensed to several companies. It is particulady suited to propylene conversion to -butyraldehyde for 2-ethylhexanol production in that by-product isobutyraldehyde is minimized. [Pg.458]

Hydroformylation of an olefin usiag synthesis gas, the 0x0 process (qv), was first commercialized ia Germany ia 1938 to produce propionaldehyde from ethylene and butyraldehydes from propylene (12). [Pg.472]

Propylene-Based Routes. The strong acid-catalyzed carbonylation of propylene [115-07-1] to isobutyric acid (Koch reaction) followed by oxidative dehydration to methacrylic acid has been extensively studied since the 1960s. The principal side reaction in the Koch reaction is the formation of oligomers of propylene. Increasing yields of methacrylic acid in the oxydehydration step is the current focus of research. Isobutyric acid may also be obtained via the oxidation of isobutyraldehyde, which is available from the hydroformylation of propylene. The -butyraldehyde isomer that is formed in the hydroformylation must be separated. [Pg.252]

The spectmm of oxo products ia Japan is far less diverse. Nearly 75% of Japan s total oxo capacity of 733,000 t is dedicated to the hydroformylation of propylene. 2-EH derived from -butyraldehyde is by far the dominant product. Other products iaclude linear alcohols and higher branched alcohols. Additionally, Japan is the world s principal source of branched heptyl alcohol. The three ptincipal Japanese oxo producers having slightly more than 70% of Japan s total oxo capacity are Mitsubishi Kasei, Kyowa Yuka, and Japan Oxocol. [Pg.472]

The most common oxidatiou states and corresponding electronic configurations of rhodium are +1 which is usually square planar although some five coordinate complexes are known, and +3 (t7 ) which is usually octahedral. Dimeric rhodium carboxylates are +2 (t/) complexes. Compounds iu oxidatiou states —1 to +6 (t5 ) exist. Significant iudustrial appHcatious iuclude rhodium-catalyzed carbouylatiou of methanol to acetic acid and acetic anhydride, and hydroformylation of propene to -butyraldehyde. Enantioselective catalytic reduction has also been demonstrated. [Pg.179]

Homogeneous rhodium-catalyzed hydroformylation (135,136) of propene to -butyraldehyde (qv) was commercialized in 1976. -Butyraldehyde is a key intermediate in the synthesis of 2-ethyIhexanol, an important plasticizer alcohol. Hydroformylation is carried out at <2 MPa (<290 psi) at 100°C. A large excess of triphenyl phosphine contributes to catalyst life and high selectivity for -butyraldehyde (>10 1) yielding few side products (137). Normally, product separation from the catalyst [Rh(P(C2H2)3)3(CO)H] [17185-29-4] is achieved by distillation. [Pg.180]

Garbonylation of Olefins. The carbonylation of olefins is a process of immense industrial importance. The process includes hydroformylation and hydrosdylation of an olefin. The hydroformylation reaction, or oxo process (qv), leads to the formation of aldehydes (qv) from olefins, carbon monoxide, hydrogen, and a transition-metal carbonyl. The hydro sdylation reaction involves addition of a sdane to an olefin (126,127). One of the most important processes in the carbonylation of olefins uses Co2(CO)g or its derivatives with phosphoms ligands as a catalyst. Propionaldehyde (128) and butyraldehyde (qv) (129) are synthesized industrially according to the following equation ... [Pg.69]

The largest commercial process is the hydroformylation of propene, which yields n-butyraldehyde and isobutyraldehyde. n-Butyraldehyde (n-butanal) is either hydrogenated to n-butanol or transformed to 2-ethyl-hexanol via aldol condensation and subsequent hydrogenation. 2-Ethylhexanol is an important plasticizer for polyvinyl chloride. This reaction is noted in Chapter 8. [Pg.164]

The catalytic hydroformylation of olefins is discussed in Chapter 5. The reaction of propylene with CO and H2 produces n-butyraldehyde as the main product. Isobutyraldehyde is a by-product °... [Pg.232]

Hydroformylation is an important industrial process carried out using rhodium phosphine or cobalt carbonyl catalysts. The major industrial process using the rhodium catalyst is hydroformylation of propene with synthesis gas (potentially obtainable from a renewable resource, see Chapter 6). The product, butyraldehyde, is formed as a mixture of n- and iso- isomers the n-isomer is the most desired product, being used for conversion to butanol via hydrogenation) and 2-ethylhexanol via aldol condensation and hydrogenation). Butanol is a valuable solvent in many surface coating formulations whilst 2-ethylhexanol is widely used in the production of phthalate plasticizers. [Pg.110]

The first stage of the process is a hydroformylation (oxo) reaction from which the main product is n-butyraldehyde. The feeds to this reactor are synthesis gas (CO/H2 mixture) and propylene in the molar ratio 2 1, and the recycled products of isobutyraldehyde cracking. The reactor operates at 130°C and 350 bar, using cobalt carbonyl as catalyst in solution. The main reaction products are n- and isobutyraldehyde in the ratio of 4 1, the former being the required product for subsequent conversion to 2-ethylhexanol. In addition, 3 per cent of the propylene feed is converted to propane whilst some does not react. [Pg.965]

One of the most selective hydroformylation catalysts was obtained when cobalt acetate was irradiated in the presence of an excess of a phosphine, with synthesis gas at 80 atm, in methanol as the solvent. Propylene was hydroformylated with this catalyst to give butyraldehyde with an n/i ratio of more than 99/1 /10/. In the absence of phosphine, the cobalt acetate forms a more active catalyst which is, however, less selective for straight chain products /23/. [Pg.151]

The principal product of the hydroformylation which is most desired in industrial applications is a linear aldehyde. The unmodified, cobalt-catalyzed processes produce a mixture of linear and branched aldehydes, the latter being mostly an a-methyl isomer. For the largest single application—propylene to butyraldehydes—the product composition has an isomer ratio (ratio of percent linear to percent branched) of (2.5 t.0)/l. The isobutyraldehyde cannot be used to make 2-ethylhexanol, and iso-... [Pg.10]

Figure 11.6 Effect of varying the water soluble phosphine ligand on the hydroformylation of propene to butyraldehyde. P Rh ratio = TPPTS 80 BISBIS 7 NORBOS 14 BINAS 7... Figure 11.6 Effect of varying the water soluble phosphine ligand on the hydroformylation of propene to butyraldehyde. P Rh ratio = TPPTS 80 BISBIS 7 NORBOS 14 BINAS 7...
Rhodium-catalyzed biphasic hydroformylation of olefins. The Ruhrchemie-Rhone Poulenc process for manufacturing butyraldehyde... [Pg.108]

The only other olefin feedstock which is hydroformylated in an aqueous/organic biphasic system is a mixture of butenes and butanes called raffinate-II [8,61,62]. This low-pressure hydroformylation is very much like the RCH-RP process for the production of butyraldehyde and uses the same catalyst. Since butenes have lower solubility in water than propene, satisfactory reaction rates are obtained only with increased catalyst concentrations. Otherwise the process parameters are similar (Scheme 4.3), so much that hydroformylation of raffinate-11 or propene can even be carried out in the same unit by slight adjustment of operating parameters. [Pg.112]

In this chapter we shall review the aqueous hydroformylation of substrates other than simple terminal alkenes. Of course, preparation of butyraldehyde or plasticizer alcohols is also a synthetic application but in the following a few examples are given for application of hydroformylation in reactions of more complex substrates and in synthesis of more elaborate molecules. Most of these chemical transformations could also be effected in one-phase reactions (organic or aqueous), however, the biphasic variants were not inferior in chemistry and offered the advantage of easy catalyst-product separation. [Pg.135]

Butyraldehyde is made from propylene by the 0x0 process, also known as hydroformylation. Sjmthesis gas (CO + H2) is catalytically reacted with propylene to the butyraldehydes. The approximate yields are 67% -butyraldehyde and 15% isobutyraldehyde. [Pg.177]

The discovery and use of fluorophosphites and chlorophosphites as trivalent phosphorus ligands in the rhodium catalyzed, low-pressure hydroformylation reaction are described. The hydroformylation reaction with halophosphite ligands has been demonstrated with terminal and internal olefins. For the hydroformylation of propylene, the linear to branched ratio of the butyraldehyde product shows a strong dependency on the ligand to rhodium molar ratios, the reaction temperature, and the carbon monoxide partial pressure. [Pg.31]

The hydroformylation reaction, also known as the oxo reaction, is used extensively in commercial processes for the preparation of aldehydes by the reaction of one mole of an olefin with one mole each of hydrogen and carbon monoxide. The most extensive use of the reaction is in the preparation of normal- and iso-butyraldehyde from propylene. The ratio of the amount of the normal aldehyde product to the amount of the iso aldehyde product typically is referred to as the normal to iso (N I) or the normal to branched (N B) ratio. In the case of propylene, the normal- and iso-butyraldehydes obtained from propylene are in turn converted into many commercially-valuable chemical products such as n-butanol, 2-ethyl-hexanol, trimethylol propane, polyvinylbutyral, n-butyric acid, iso-butanol, neo-pentyl glycol,... [Pg.31]

The Ruhrchemie/Rhone-Poulenc process is performed annually on a 600,000 metric ton scale (18). In this process, propylene is hydroformylated to form butyraldehyde. While the solubility of propylene in water (200 ppm) is sufficient for catalysis, the technique cannot be extended to longer-chain olefins, such as 1-octene (<3 ppm solubility) (20). Since the reaction occurs in the aqueous phase (21), the hydrophobicity of the substrate is a paramount concern. We overcame these limitations via the addition of a polar organic co-solvent coupled with subsequent phase splitting induced by dissolution of gaseous CO2. This creates the opportunity to run homogeneous reactions with extremely hydrophobic substrates in an organic/aqueous mixture with a water-soluble catalyst. After C02-induced phase separation, the catalyst-rich aqueous phase and the product-rich organic phase can be easily decanted and the aqueous catalyst recycled. [Pg.400]

The latest development in industrial alkene hydroformylation is the introduction by Rurhchemie of water-soluble sulfonated triphenylphosphine ligands.94 Hydroformylation is carried out in an aqueous biphasic system in the presence of Rh(I) and the trisodium salt of tris(m-sulfophenyl)phosphine (TPPTN). High butyraldehyde selectivity (95%) and simple product separation make this process more economical than previous technologies. [Pg.378]

It was discovered by Roelen in 1938 and is the oldest and largest volume catalytic reaction of alkenes, with the conversion of propylene to butyraldehyde being the mosi important. About 5 million tons of aldehydes and aldehyde derivatives (mostly alcohols) are produced annually making the process the most important industrial synthesis using a metal carbonyl complex as a catalyst. The name hydroformylation arises from the fact that in a formal sense a hydrogen atom and. formyl group are added across a double bond. The net result of the process is extension of (he carbon chain by one and introduction of oxygen into the molecule. [Pg.891]

Metal-catalyzed reactions of CO with organic molecules have been under investigation since the late 1930s and early 1940s, when Roelen (/) discovered the hydroformylation reaction and Reppe (2) the acrylic acid synthesis and other related carbonylation reactions. These early studies of the carbonyla-tions of unsaturated hydrocarbons led to extremely useful syntheses of a variety of oxygenated products. Some of the reactions, however, suffered from the serious problem that they produced isomeric mixtures of products. For example, the cobalt-catalyzed hydroformylation of propylene gave mixtures of n-butyraldehyde and isobutyraldehyde. [Pg.323]

When P(OPh)3 was used as ligand, the effect of an excess of it on the isomer ratio was far less significant.301 These studies have led to the introduction of an industrial process for the rhodium-catalyzed hydroformylation of propylene to n-butyraldehyde which is rapidly gaining in importance relative to the older, cobalt-catalyzed route. 2,303 The relative merits of the two processes have been discussed.303,304... [Pg.260]

A kinetic study of the hydroformylation has been carried out306 and the mechanism proposed by Wilkinson (Scheme 16) was extended to express both the associative and dissociative modes of alkene coordination298 and the formation of n- and iso-butyraldehydes. High-pressure IR spectroscopy using CO and either H2 or D2 has confirmed the formation of [RhH(CO)2(PPh3)2] in these reactions.307... [Pg.260]


See other pages where Butyraldehyde, hydroformylation is mentioned: [Pg.471]    [Pg.173]    [Pg.167]    [Pg.258]    [Pg.165]    [Pg.232]    [Pg.176]    [Pg.1]    [Pg.57]    [Pg.225]    [Pg.105]    [Pg.109]    [Pg.63]    [Pg.258]    [Pg.137]    [Pg.9]    [Pg.371]    [Pg.377]    [Pg.261]   


SEARCH



Butyraldehyde

Butyraldehyde, hydroformylation propylene

Butyraldehydes

Rhodium-catalyzed biphasic hydroformylation of olefins. The Ruhrchemie-Rhone Poulenc process for manufacturing butyraldehyde

© 2024 chempedia.info