Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk-phase water properties

The addition of dissociable solutes to water disrupts its normal tetrahedral structure. Many simple inorganic solutes do not possess hydrogen bond donors or acceptors and therefore can interact with water only by dipole interactions (e.g. Figure 7.5 for NaCl). Multilayer water exists in a structurally disrupted state while bulk-phase water has properties similar to... [Pg.218]

Water associated at the interfaces and with macromolecular components may have quite different properties from those in the bulk phase. Water can be expected to form locally ordered structures at the surface of water-soluble, as well as water-insoluble, macromolecules and at the boundaries of the cellular organelles. Biomacromolecules generally have many ionized and polar groups on their surfaces and tend to align near polar water molecules. This ordering effect exerted by the macromolecular surface extends quite far into the surrounding medium. [Pg.37]

Another similarity is the existence of an ordered (structured) water layer at the respective surfaces. Some water molecules are associated with each lipid head group of phosphatidylcholine bilayers (Hauser, 1975) and exhibit properties different from bulk phase water but qualitatively similar to those of interfacial water at metal electrode surfaces. [Pg.157]

Salts, ions, and ionic liquids in water are widely studied in AIMD. Several anions [165-172], cations [153, 165, 173-182], and ion pairs [164, 183, 184], as weU as ionic hquids ion pairs [185] in water were studied using AIMD. In all cases structural as well as dynamical properties of the ion s hydration shell were examined. In some cases the influence of the solvated ions on the water molecules were studied within the Wannier approach. In general, little effect of the halogen ions on the dipole moments of the water molecules in the first hydration shell was observed, while further water molecules remain unaffected. In contrast to this, it was observed that cations increase the dipole moments of the first hydration shell water by approximately 0.2-0.5 D. The second hydration shell and the bulk phase water molecules were mostly unaffected with regard to the dipole moment by the cations as well [91]. [Pg.141]

The reports were that water condensed from the vapor phase into 10-100-/im quartz or pyrex capillaries had physical properties distinctly different from those of bulk liquid water. Confirmations came from a variety of laboratories around the world (see the August 1971 issue of Journal of Colloid Interface Science), and it was proposed that a new phase of water had been found many called this water polywater rather than the original Deijaguin term, anomalous water. There were confirming theoretical calculations (see Refs. 121, 122) Eventually, however, it was determined that the micro-amoimts of water that could be isolated from small capillaries was always contaminated by salts and other impurities leached from the walls. The nonexistence of anomalous or poly water as a new, pure phase of water was acknowledged in 1974 by Deijaguin and co-workers [123]. There is a mass of fascinating anecdotal history omitted here for lack of space but told very well by Frank [124]. [Pg.248]

As in die case of die diffusion properties, die viscous properties of die molten salts and slags, which play an important role in die movement of bulk phases, are also very stiiicture-seiisitive, and will be refeiTed to in specific examples. For example, die viscosity of liquid silicates are in die range 1-100 poise. The viscosities of molten metals are very similar from one metal to anodier, but die numerical value is usually in die range 1-10 centipoise. This range should be compared widi die familiar case of water at room temperature, which has a viscosity of one centipoise. An empirical relationship which has been proposed for die temperature dependence of die viscosity of liquids as an AiTlienius expression is... [Pg.323]

Most simulations have been performed in the mieroeanonieal, eanonieal, or NPT ensemble with a fixed number of moleeules. These systems typieally require an iterative adjustment proeess until one part of the system exhibits the required properties, like, eg., the bulk density of water under ambient eonditions. Systems whieh are equilibrated earefully in sueh a fashion yield valuable insight into the physieal and, in some eases, ehemieal properties of the materials under study. However, the speeifieation of volume or pressure is at varianee with the usual experimental eonditions where eontrol over the eomposition of the interfaeial region is usually exerted through the ehemieal potential, i.e., the interfaeial system is in thermodynamie and ehemieal equilibrium with an extended bulk phase. Sueh systems are best simulated in the grand eanonieal ensemble where partiele numbers are allowed to fluetuate. Only a few simulations of aqueous interfaees have been performed to date in this ensemble, but this teehnique will undoubtedly beeome more important in the future. Partieularly the amount of solvent and/or solute in random disordered or in ordered porous media ean hardly be estimated by a judieious equilibration proeedure. Chemieal potential eontrol is mandatory for the simulation of these systems. We will eertainly see many applieations in the near future. [Pg.379]

Phosphorus-containing surfactants are amphiphilic molecules, exhibiting the same surface-active properties as other surfactants. That means that they reduce the surface tension of water and aqueous solutions, are adsorbed at interfaces, form foam, and are able to build micelles in the bulk phase. On account of the many possibilities for alteration of molecular structure, the surface-active properties of phosphorus-containing surfactants cover a wide field of effects. Of main interest are those properties which can only be realized with difficulty or in some cases not at all by other surfactants. Often even quantitative differences are highly useful. [Pg.590]

The performance of demulsifiers can be predicted by the relationship between the film pressure of the demulsifier and the normalized area and the solvent properties of the demulsifier [1632]. The surfactant activity of the demulsifier is dependent on the bulk phase behavior of the chemical when dispersed in the crude oil emulsions. This behavior can be monitored by determining the demulsifier pressure-area isotherms for adsorption at the crude oil-water interface. [Pg.327]

Water-in-oil microemulsions (w/o-MEs), also known as reverse micelles, provide what appears to be a very unique and well-suited medium for solubilizing proteins, amino acids, and other biological molecules in a nonpolar medium. The medium consists of small aqueous-polar nanodroplets dispersed in an apolar bulk phase by surfactants (Fig. 1). Moreover, the droplet size is on the same order of magnitude as the encapsulated enzyme molecules. Typically, the medium is quite dynamic, with droplets spontaneously coalescing, exchanging materials, and reforming on the order of microseconds. Such small droplets yield a large amount of interfacial area. For many surfactants, the size of the dispersed aqueous nanodroplets is directly proportional to the water-surfactant mole ratio, also known as w. Several reviews have been written which provide more detailed discussion of the physical properties of microemulsions [1-3]. [Pg.472]

It is common observation that a liquid takes the shape of a container that surrounds or contains it. However, it is also found that, in many cases, there are other subtle properties that arise at the interface of liquids. The most common behavior is bubble and foam formation. Another phenomena is that, when a glass capillary tube is dipped in water, the fluid rises to a given height. It is observed that the narrower the tube, the higher the water rises. The role of liquids and liquid surfaces is important in many everyday natural processes (e.g., oceans, lakes, rivers, raindrops, etc.). Therefore, in these systems, one will expect the surface forces to be important, considering that the oceans cover some 75% of the surface of the earth. Accordingly, there is a need to study surface tension and its effect on surface phenomena in these different systems. This means that the structures of molecules in the bulk phase need to be considered in comparison to those at the surface. [Pg.9]

When mixing two surfactants species in a SOW system, an equilibrium takes place between the oil and water phases and the interface for each species. Since the two species do not necessarily exhibit the same affinity for the interface and the oil and water bulk phases, the compositions of the surfactant mixtures at interface and in the phases might be different. For instance if a very hydrophilic species is mixed with a very lipophihc one, as often recommended in the old formulation literature, then the hydrophihc surfactant has a strong tendency to partition in water, whereas the lipophihc one would partition in the oil. In this case the surfactant mixture in water will contain a large majority of hydrophilic species, i.e., it will be very hydrophilic, whereas the oil phase will predominantly contain the hpophihc species, with the remaining adsorbing at interface. This situation in which each species actuates on its own, more or less independently of the other, has been called non-collective behavior. Since the surfactant mixture composition at interface is often the one that commands the actual property of the system, such as the interfacial tension or the stabihty of the emulsion, it is most important to know how to calculate or measure the characteristics of the mixture present at interface. Such methods will be discussed in the next section. [Pg.85]

BULK-PHASE PROPERTIES OF SOLVENTS AND CARRIER GASES 1.1.1 Water... [Pg.551]

Let us consider a system in which two bulk phases, 1 and 2 (e.g., air and water, an organic phase and water), are in contact with each other at a given temperature and pressure. We assume that the two phases are in equilibrium with each other with respect to the amounts of all chemical species present in each. We now introduce a very small amount of a given organic compound i into phase 2 (i.e., the properties of both bulk phases are not significantly influenced by the introduction of the compound). After a short time, some molecules of compound i will have been transferred from phase 2 (reactant) to phase 1 (product) as portrayed in Eq. 3-11. At this point we write down the chemical potentials of i in the two phases according to Eq. 3-36 ... [Pg.84]

There are four types of fundamental subjects involved in the process represented by Eq. (1.1) (1) metal-solution interface as the locus of the deposition process, (2) kinetics and mechanism of the deposition process, (3) nucleation and growth processes of the metal lattice (M a[tice), and (4) structure and properties of the deposits. The material in this book is arranged according to these four fundamental issues. We start by considering the basic components of an electrochemical cell for deposition in the first three chapters. Chapter 2 treats water and ionic solutions Chapter 3, metal and metal surfaces and Chapter 4, the metal-solution interface. In Chapter 5 we discuss the potential difference across an interface. Chapter 6 contains presentation of the kinetics and mechanisms of electrodeposition. Nucleation and growth of thin films and formation of the bulk phase are treated in Chapter 7. Electroless deposition and deposition by displacement are the subject of Chapters 8 and 9, respectively. Chapter 10 contains discussion on the effects of additives in the deposition and nucleation and growth processes. Simultaneous deposition of two or more metals, alloy deposition, is discussed in Chapter 11. The manner in which... [Pg.2]

The primary mechanism for energy conservation is adsorption of surfactant molecules at various available interfaces. However, when, for instance, the water-air interface is saturated conservator may continue through other means (Figure 12.3). One such example is the crystallization or precipitation of the surfactant from solution, in other words, bulk phase separation. Another example is the formation of molecular aggregates or micelles that remain in solution as thermodynamically stable, dispersed species with properties distinct from those of an isotropic solution containing monomeric surfactant molecules (Myers, 1992). [Pg.262]

All the techniques discussed so far refer to clean surfaces or surfaces with adsorbed molecules. When thicker adsorbed layers are present on the surface, the properties of these layers start to resemble those of the corresponding bulk phases. For Instance, for thin water layers on solid surfaces the dielectric permittivity (bulk water. A more or less gradual transition takes place towards wetting films to which we shall return in Volume III and. as far as multilayer adsorption is concerned, in sec. 1.5 g, h. [Pg.52]


See other pages where Bulk-phase water properties is mentioned: [Pg.182]    [Pg.186]    [Pg.58]    [Pg.305]    [Pg.226]    [Pg.451]    [Pg.178]    [Pg.140]    [Pg.492]    [Pg.819]    [Pg.378]    [Pg.144]    [Pg.15]    [Pg.224]    [Pg.276]    [Pg.59]    [Pg.224]    [Pg.90]    [Pg.402]    [Pg.120]    [Pg.178]    [Pg.182]    [Pg.51]    [Pg.396]    [Pg.184]    [Pg.415]    [Pg.25]    [Pg.424]    [Pg.32]   
See also in sourсe #XX -- [ Pg.28 , Pg.29 , Pg.30 , Pg.31 , Pg.37 ]




SEARCH



Bulk phase

Bulk properties

Bulk water

Bulk-phase water

Phase properties

Water phases

Water properties

© 2024 chempedia.info