Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk diffusion controlled process

It is usually believed that the growth of dendritic crystals is controlled by a bulk diffusion-controlled process which is defined as a process controlled by a transportation of solute species by diffusion from the bulk of aqueous solution to the growing crystals (e.g., Strickland-Constable, 1968 Liu et al., 1976). The appearances of feather- and star-like dendritic shapes indicate that the concentrations of pertinent species (e.g., Ba +, SO ) in the solution are highest at the corners of crystals. The rectangular (orthorhombic) crystal forms are generated where the concentrations of solute species are approximately the same for all surfaces but it cannot be homogeneous when the consumption rate of solute is faster than the supply rate by diffusion (Nielsen, 1958). [Pg.73]

For an oxide growing on a metal by a bulk diffusion controlled process, C. Wagner (4) derived an expression for the flux as... [Pg.82]

The above estimates of pressure variations suggest that their magni-tude as a percentage of the absolute pressure may not be very large except near the limit of Knudsen diffusion. But in porous catalysts, as we have seen, the diffusion processes to be modeled often lie in the Intermediate range between Knudsen streaming and bulk diffusion control. It is therefore tempting to try to simplify the flux equations in such a way as to... [Pg.132]

Given that, under the defined conditions, there is no interfacial kinetic barrier to transfer from phase 2 to phase 1, the concentrations immediately adjacent to each side of the interface may be considered to be in dynamic equilibrium throughout the course of a chronoamperometric measurement. For high values of Kg the target species in phase 2 is in considerable excess, so that the concentration in phase 1 at the target interface is maintained at a value close to the initial bulk value, with minimal depletion of Red in phase 2. Under these conditions, the response of the tip (Fig. 11, case (a)] is in agreement with that predicted for other SECM diffusion-controlled processes with no interfacial kinetic barrier, such as induced dissolution [12,14—16] and positive feedback [42,43]. A feature of this response is that the current rapidly attains a steady state, the value of which increases... [Pg.307]

The dual treatment in the Buhler botde-to-bottle process is an important aspect in food safety considerations. The bulk of the contaminants are removed in the extruder. However, the SSP process provides a back-up to remove any residual contaminants, which are now homogeneously distributed in the PET pellets. The cleaning becomes a well-defined and predictable diffusion controlled process, which is defined by pellet diameter, treatment temperature and time. The same parameters also regulate the SSP process. For products with similar reactivity, a known increase in molecular weight during the solid-state process will also provide a known cleaning efficiency. [Pg.186]

If the transport process is rate-determining, the rate is controlled by the diffusion coefficient of the migrating species. There are several models that describe diffusion-controlled processes. A useful model has been proposed for a reaction occurring at the interface between two solid phases A and B [290]. This model can work for both solids and compressed liquids because it doesn t take into account the crystalline environment but only the diffusion coefficient. This model was initially developed for planar interface reactions, and then it was applied by lander [291] to powdered compacts. The starting point is the so-called parabolic law, describing the bulk-diffusion-controlled growth of a product layer in a unidirectional process, occurring on a planar interface where the reaction surface remains constant ... [Pg.154]

On the other hand, if the rate constant for the quenching step exceeds that expected for a diffusion-controlled process, a modification of the parameters in the Debye equation is indicated. Either the diffusion coefficient D as given by the Stokes-Einstein equation is not applicable because the bulk viscosity is different from the microviscosity experienced, by the quencher (e.g. quenching of aromatic hydrocarbons by O, in paraffin solvents) or the encounter radius RAb is much greater than the gas-kinetic collision radius. In the latter case a long-range quenching... [Pg.173]

On the other hand, kinetics of reactions occiuring on a solid surface, that is, catalysis or photocatalysis, must be significantly different. There may be two representative extreme cases. One is so-called a diffusion controlled process, in which siuface reactions and the following detachment process occur very rapidly to give a negligible surface concentration of adsorbed molecules, and the overall rate coincides with the rate of adsorption of substrate molecules. In this case, the overall rate is proportional to concentration of the substrate in a solution or gas phase (bulk), that is, first-order kinetics is observed IS). The other extreme case is so-called surface-reaction limited, in which surface adsorption is kept in equilibrium during the reaction amd the overall rate coincides with the rate of reaction occurring on the surface, that is, reaction of e and h+ with surface-adsorbed substrate (l9). Under these conditions, the overall rate is not proportional to concentration of the substrate in the bulk unless the adsorption isotherm obeys a Henry-type equation, in which the amount of adsorption is proportional to concentration in the bulk (20). In the former case, the rate... [Pg.406]

Proportionality of and t Is often (but not always) an indication of a diffusion-controlled process, but such a proportionality does not have to extend over the entire time domain considered. It may happen that diffusion control is realized but that the computed D, is lower than the corresponding value in the gas phase. One possible explanation for this may be that the supply is followed by a slower surface diffusion process, which Is rate-determining. Surface diffusion coefficients D° tend to be lower than the corresponding bulk values. Such diffusion has been briefly discussed In sec. I.6.5g, under (1). When surface diffusion Is zero, the adsorbate is localized. In that case equilibration between covered and empty parts of the surface can only take place by desorption and readsorption. For D° 0 the adsorbate is mobile it then resembles a two-dimensional gas and we have already given the partition functions for one adsorbed mobile atom in sec. I.3.5d. In sec. 1.5d we shall briefly discuss the transition between localized and mobile adsorption. [Pg.40]

Micelles are in dynamic equilibrium with their monomer surfactants. Two relaxation processes are related to this equilibrium, a fast one in the microsecond time domain associated with the exchange of individual monomers between the micelles and the bulk aqueous phase and a slower one on millisecond time-scale associated with the complete dissolution of the micelles into monomers [8], For example, the exit rate for the SDS anion from its micelle is about lO s, which is considered to be a diffusion-controlled process [8a]. Nonpolar molecules are usually attracted to the relatively hydrophobic inner core of micelles, whereas ionic reactants and products are either associated with the Stem and Gouy-Chapman layers or repelled from the micelles, depending on the sign of electrostatic interaction. For example, NMR studies show that nonpolar molecules such as benzene and naphthalene are... [Pg.2953]

Reversible cyclic voltammograms are not always governed by diffusion-controlled processes. For example, the cases of a redox reagent adsorbed onto an electrode surface or confined to a thin layer of solution adjacent to the electrode surface are also of considerable importance. In fact, the same theory may be applied to both adsorbed layers [52] and processes that occur in thin layers [53] (thinner than the diffusion layer). In both these cases, the current for the reversible process can be derived by substitution of the expression / (f) = E4 p into the Nernst equation (Eq. II. 1.7) and noting thatE (f) = Einmai - vt, [B] c=o = [A]bulk - [A]x=o. and Vis the volume of the thin layer (Eq. II. 1.12a)... [Pg.70]

Schematic diagram of the concentration profile in a bulk diffusion-controlled permeation process. [Pg.704]

In most electrochemical reactions, except very fast diffusion-controlled processes, the adsorption of reactants is a relatively fast step compared with succeeding electron transfer steps and can be considered in quasi-equilibrium. A knowledge of reactant adsorption behavior is necessary for interpretation of the mechanism of the reaction. Equilibrium adsorption studies are directed toward the evaluation of the surface concentration of reactants in relation to the electrode potential, the temperature, the activity of reactants, and other species in the bulk and the energy of adsorption as a function of the partial coverage 0. Study of the surface coverage by adsorbed intermediates can in some cases give additional information to the kinetic approach. Determination of adsorbed intermediates would indicate the path which the reaction follows. [Pg.57]

They suggested that if the transport from the bulk solution to the interface was purely a diffusion-controlled process, then calculated, model-derived diffusion coefficients should match experimentally determined values. However, they found that the experimental diffusion coefficients were much lower than the predictions, implying that diffusion was not the rate-determining process, and leading to the conclusion that there is an (additional) activation barrier. [Pg.409]


See other pages where Bulk diffusion controlled process is mentioned: [Pg.168]    [Pg.168]    [Pg.244]    [Pg.318]    [Pg.206]    [Pg.83]    [Pg.84]    [Pg.231]    [Pg.131]    [Pg.203]    [Pg.448]    [Pg.343]    [Pg.256]    [Pg.287]    [Pg.234]    [Pg.118]    [Pg.69]    [Pg.311]    [Pg.244]    [Pg.255]    [Pg.206]    [Pg.249]    [Pg.96]    [Pg.162]    [Pg.319]    [Pg.691]    [Pg.9237]    [Pg.3]    [Pg.409]    [Pg.192]    [Pg.174]    [Pg.151]    [Pg.89]    [Pg.187]    [Pg.131]   


SEARCH



Bulk process

Diffusion control

Diffusion controlled

Diffusion process

Diffusion-controlled process

Diffusivity, bulk

© 2024 chempedia.info